"Elements of finite order (EFO) in Lie groups"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
imported>Pythagoras0 |
Pythagoras0 (토론 | 기여) |
||
(다른 사용자 한 명의 중간 판 2개는 보이지 않습니다) | |||
1번째 줄: | 1번째 줄: | ||
==introduction== | ==introduction== | ||
* explicit formulas for the number of conjugacy classes of EFOs in Lie groups | * explicit formulas for the number of conjugacy classes of EFOs in Lie groups | ||
− | * appears for the number of certain vacua in the quantum moduli space of M-theory compactifications on manifolds of | + | * appears for the number of certain vacua in the quantum moduli space of M-theory compactifications on manifolds of <math>G_2</math> holonomy |
− | * | + | * <math>N(G,m)</math> : number of conjugacy classes of <math>G</math> in <math>E(G,m)</math> |
− | * | + | * <math>N(G,m,s)</math> : number of conjugacy classes of <math>G</math> in <math>E(G,m,s)</math> |
==EFO in unitary groups== | ==EFO in unitary groups== | ||
− | === | + | ===<math>U(n)</math>=== |
− | * | + | * <math>N(G,m)= {n+m-1\choose m-1}</math> |
− | * | + | * <math>N(G,m,s)=\frac{s}{n}{n\choose s}{m\choose s}</math> |
− | === | + | ===<math>SU(n)</math>=== |
− | * | + | * <math>N(G,m)= \frac{1}{m}{n+m-1\choose m-1}</math> if <math>(n,m)=1</math> |
− | * | + | * <math>N(G,m,s)= \frac{s}{nm}{n\choose s}{m\choose s}</math> if <math>(n,m)=1</math> |
22번째 줄: | 22번째 줄: | ||
==computational resource== | ==computational resource== | ||
* https://docs.google.com/file/d/0B8XXo8Tve1cxLU5vUzJRQUNGdnc/edit | * https://docs.google.com/file/d/0B8XXo8Tve1cxLU5vUzJRQUNGdnc/edit | ||
+ | ===OEIS=== | ||
+ | * type A http://oeis.org/A008610 | ||
+ | * type C http://oeis.org/A005993 | ||
28번째 줄: | 31번째 줄: | ||
[[분류:Q-system]] | [[분류:Q-system]] | ||
+ | [[분류:migrate]] |
2020년 11월 14일 (토) 01:03 기준 최신판
introduction
- explicit formulas for the number of conjugacy classes of EFOs in Lie groups
- appears for the number of certain vacua in the quantum moduli space of M-theory compactifications on manifolds of \(G_2\) holonomy
- \(N(G,m)\) : number of conjugacy classes of \(G\) in \(E(G,m)\)
- \(N(G,m,s)\) : number of conjugacy classes of \(G\) in \(E(G,m,s)\)
EFO in unitary groups
\(U(n)\)
- \(N(G,m)= {n+m-1\choose m-1}\)
- \(N(G,m,s)=\frac{s}{n}{n\choose s}{m\choose s}\)
\(SU(n)\)
- \(N(G,m)= \frac{1}{m}{n+m-1\choose m-1}\) if \((n,m)=1\)
- \(N(G,m,s)= \frac{s}{nm}{n\choose s}{m\choose s}\) if \((n,m)=1\)
computational resource
OEIS
- type A http://oeis.org/A008610
- type C http://oeis.org/A005993