"Gabriel's theorem"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
imported>Pythagoras0 |
imported>Pythagoras0 |
||
15번째 줄: | 15번째 줄: | ||
− | |||
− | + | ==Kac theorem== | |
− | |||
==related items== | ==related items== | ||
* [[Quiver representations]] | * [[Quiver representations]] | ||
+ | |||
+ | |||
+ | ==expositions== | ||
+ | * Carroll, [http://www.math.missouri.edu/~carrollat/files/Quiver_Lecture.pdf Gabriel's Theorem] | ||
[[분류:개인노트]] | [[분류:개인노트]] |
2014년 4월 14일 (월) 18:42 판
statement
- \thm (Gabriel)
- A connected quiver Q has finite type iff the underlying graph is a Dynkin diagram of (A,D,E) type. Moreoever there is a bijection
{indecomposable kQ-modules} -> {positive roots}
M -> dim M (dimension vector)
idea of proof
- define tilting functor
- get Coxeter element
Kac theorem
expositions
- Carroll, Gabriel's Theorem