"Gabriel's theorem"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
imported>Pythagoras0
1번째 줄: 1번째 줄:
 
==statement==
 
==statement==
  
* \thm (Gabriel)
+
;thm (Gabriel)
A connected quiver Q has finite type iff the underlying graph is a Dynkin diagram of (A,D,E) type. Moreoever there is a bijection<br> {indecomposable kQ-modules} -> {positive roots}<br> M -> dim M (dimension vector)<br>
+
 
 +
A connected quiver Q has finite type iff the underlying graph is a Dynkin diagram of (A,D,E) type. Moreoever there is a bijection between {indecomposable kQ-modules} and {positive roots}
 +
$$M \to \dim M$$
 +
where $\dim$ is dimension vector
  
 
 
 
 

2014년 4월 23일 (수) 18:45 판

statement

thm (Gabriel)

A connected quiver Q has finite type iff the underlying graph is a Dynkin diagram of (A,D,E) type. Moreoever there is a bijection between {indecomposable kQ-modules} and {positive roots} $$M \to \dim M$$ where $\dim$ is dimension vector

 

 

idea of proof

  • define tilting functor
  • get Coxeter element

 


Kac theorem

related items


expositions