"Fourier coefficients of Siegel-Eisenstein series"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
 
(다른 사용자 한 명의 중간 판 5개는 보이지 않습니다)
1번째 줄: 1번째 줄:
 
==introduction==
 
==introduction==
$
+
<math>
 
\newcommand\supparen[1]{^{(#1)}}
 
\newcommand\supparen[1]{^{(#1)}}
 
\newcommand\suppn{\supparen n}
 
\newcommand\suppn{\supparen n}
34번째 줄: 34번째 줄:
 
\newcommand\inv{^{-1}}
 
\newcommand\inv{^{-1}}
 
\newcommand\suppm{\supparen m}
 
\newcommand\suppm{\supparen m}
$
+
</math>
For any positive integer degree $n$ and even integer weight $k>n+1$,
+
For any positive integer degree <math>n</math> and even integer weight <math>k>n+1</math>,
the Siegel Eisenstein series of weight $k$ and degree $n$ is
+
the Siegel Eisenstein series of weight <math>k</math> and degree <math>n</math> is
$$
+
:<math>
 
\Enk(z)=\sum_{\gamma\in P_\Z\bs\Gamn}j(\gamma,z)^{-k}.
 
\Enk(z)=\sum_{\gamma\in P_\Z\bs\Gamn}j(\gamma,z)^{-k}.
$$
+
</math>
Here $z$ lies in the Siegel upper half space $\UHPn$,
+
Here <math>z</math> lies in the Siegel upper half space <math>\UHPn</math>, <math>j(g,z)=\det (cz+d)</math>,
and the summand $j(\gamma,z)^{-k}$ is $1$ for the Siegel parabolic
+
and the summand <math>j(\gamma,z)^{-k}</math> is <math>1</math> for the Siegel parabolic
subgroup $P_\Z=\{\smallmat ab0d\}$ of the integral symplectic group
+
subgroup <math>P_\Z=\{\smallmat ab0d\}</math> of the integral symplectic group
$\Gamn=\SpnZ$.
+
<math>\Gamn=\SpnZ</math>.
  
 
This Eisenstein series has the Fourier series representation
 
This Eisenstein series has the Fourier series representation
$$
+
:<math>
 
\Enk(z)=\sum_{t\in\Xnsemi}\fc t{\Enk}\,\e(\ip tz),
 
\Enk(z)=\sum_{t\in\Xnsemi}\fc t{\Enk}\,\e(\ip tz),
$$
+
</math>
where $\Xnsemi$ denotes the set of semi-integral positive semidefinite
+
where <math>\Xnsemi</math> denotes the set of semi-integral positive semidefinite
$n$-by-$n$ matrices.
+
<math>n</math>-by-<math>n</math> matrices.
The Siegel $\Phi$ map takes Eisenstein series to Eisenstein series,
+
The Siegel <math>\Phi</math> map takes Eisenstein series to Eisenstein series,
$\Phi\Enk=\Enminusonek$ and $\Phi\Eonek=1$,
+
<math>\Phi\Enk=\Enminusonek</math> and <math>\Phi\Eonek=1</math>,
 
so it suffices to compute the Fourier coefficients of Eisenstein
 
so it suffices to compute the Fourier coefficients of Eisenstein
series for definite indices $t$; the set of such matrices is denoted $\Xn$.
+
series for definite indices <math>t</math>; the set of such matrices is denoted <math>\Xn</math>.
 
Eisenstein series are central to number theory, from Garrett's
 
Eisenstein series are central to number theory, from Garrett's
 
pullback formula to the Langlands program.  
 
pullback formula to the Langlands program.  
 
The algorithmic computation of the Siegel Eisenstein series Fourier
 
The algorithmic computation of the Siegel Eisenstein series Fourier
coefficients $\fc t\Enk$ began with C. L. Siegel and was completed by
+
coefficients <math>\fc t\Enk</math> began with C. L. Siegel and was completed by
 
H. Katsurada.  
 
H. Katsurada.  
 
The Fourier coefficient formula for definite indices,
 
The Fourier coefficient formula for definite indices,
 
to be elaborated below, is
 
to be elaborated below, is
$$
+
:<math>
 
\fc t\Enk=
 
\fc t\Enk=
 
\dfrac{2^{\lfloor \frac{n+1}{2} \rfloor} \prod_{p}F_p(t,p^{k-n-1})}
 
\dfrac{2^{\lfloor \frac{n+1}{2} \rfloor} \prod_{p}F_p(t,p^{k-n-1})}
 
{\zeta(1-k)\prod_{i=1}^{\lfloor n/2\rfloor}\zeta(1-2k+2i)}
 
{\zeta(1-k)\prod_{i=1}^{\lfloor n/2\rfloor}\zeta(1-2k+2i)}
 
\cdot\begin{cases}
 
\cdot\begin{cases}
L(\chi_{D_t},1-k+n/2)&\text{$n$ even},\\
+
L(\chi_{D_t},1-k+n/2)&\text{</math>n<math> even},\\
1&\text{$n$ odd}.
+
1&\text{</math>n<math> odd}.
 
\end{cases}
 
\end{cases}
$$
+
</math>
The Fourier coefficient depends only on the genus of its index $t$.
+
The Fourier coefficient depends only on the genus of its index <math>t</math>.
In fact the polynomial $F_p(t,X)\in\Z[X]$ depends only on the class
+
In fact the polynomial <math>F_p(t,X)\in\Z[X]</math> depends only on the class
of $t$ over $\Zp$.  
+
of <math>t</math> over <math>\Zp</math>.
  
 
+
==<math>F_p</math>-polynomials==
==$F_p$-polynomials==
+
Polynomials <math>F_p(u,X)\in\Z[X]</math> for <math>p</math> prime and <math>u\in\Xm</math> appear in
Polynomials $F_p(u,X)\in\Z[X]$ for $p$ prime and $u\in\Xm$ appear in
 
 
the Siegel Eisenstein series Fourier coefficient formula.  
 
the Siegel Eisenstein series Fourier coefficient formula.  
 
The first author of this paper wrote a program to compute these
 
The first author of this paper wrote a program to compute these
 
polynomials \cite{king03}, which has since been modified to accept
 
polynomials \cite{king03}, which has since been modified to accept
 
higher degree input. We refer to \cite{katsurada99} for the
 
higher degree input. We refer to \cite{katsurada99} for the
definition of the $F_p$ polynomials; there Katsurada proved a
+
definition of the <math>F_p</math> polynomials; there Katsurada proved a
 
functional equation for these polynomials, which was an important
 
functional equation for these polynomials, which was an important
 
step in his establishment of their recurrence relations.  
 
step in his establishment of their recurrence relations.  
 
We review this functional equation because it serves as a check on
 
We review this functional equation because it serves as a check on
 
computations. The functional equation makes reference to the
 
computations. The functional equation makes reference to the
Hilbert symbol and to the Hasse invariant. To review, for $a,b\in\Qpx$
+
Hilbert symbol and to the Hasse invariant. To review, for <math>a,b\in\Qpx</math>
the Hilbert symbol $(a,b)_p$ is $1$ if $aX^2+bY^2=Z^2$ has nontrivial
+
the Hilbert symbol <math>(a,b)_p</math> is <math>1</math> if <math>aX^2+bY^2=Z^2</math> has nontrivial
solutions in $\Qp^3$ and $-1$ if not. For $u\in\GL m\Qp^{\rm sym}$
+
solutions in <math>\Qp^3</math> and <math>-1</math> if not. For <math>u\in\GL m\Qp^{\rm sym}</math>
the Hasse invariant of $u$ is $h_p(u)=\prod_{i\le j}(a_i,a_j)_p$ where
+
the Hasse invariant of <math>u</math> is <math>h_p(u)=\prod_{i\le j}(a_i,a_j)_p</math> where
$u$ is $\GL m\Qp$-equivalent to the diagonal matrix having entries
+
<math>u</math> is <math>\GL m\Qp</math>-equivalent to the diagonal matrix having entries
$a_1,\cdots,a_m$.
+
<math>a_1,\cdots,a_m</math>.
If $m$ is even then $(-1)^{m/2}\det(2u)$ takes the form $D_uf_u^2$
+
If <math>m</math> is even then <math>(-1)^{m/2}\det(2u)</math> takes the form <math>D_uf_u^2</math>
where $D_u$ is $1$ or the fundamental discriminant of a quadratic
+
where <math>D_u</math> is <math>1</math> or the fundamental discriminant of a quadratic
number field and $f_u$ is a positive integer; let $\chi_{D_u}$ denote the
+
number field and <math>f_u</math> is a positive integer; let <math>\chi_{D_u}</math> denote the
quadratic Dirichlet character of conductor $|D_u|$.
+
quadratic Dirichlet character of conductor <math>|D_u|</math>.
For rank $m=0$, the empty matrix has determinant $1$ by convention and
+
For rank <math>m=0</math>, the empty matrix has determinant <math>1</math> by convention and
so $D_u=f_u=1$.
+
so <math>D_u=f_u=1</math>.
  
 
;theorem [Katsurada's Functional Equation]
 
;theorem [Katsurada's Functional Equation]
Let $u\in\Xm$. Set
+
Let <math>u\in\Xm</math>. Set
$$
+
:<math>
 
e_p(u)=\begin{cases}
 
e_p(u)=\begin{cases}
 
2(\lfloor\frac{\ord p{\det(2u)}-1-\delta_{p,2}}{2}\rfloor+\chi_{D_u}(p)^2)
 
2(\lfloor\frac{\ord p{\det(2u)}-1-\delta_{p,2}}{2}\rfloor+\chi_{D_u}(p)^2)
&\text{if $m$ is even},\\
+
&\text{if </math>m<math> is even},\\
\ord p{\det(2u)/2}&\text{if $m$ is odd}.
+
\ord p{\det(2u)/2}&\text{if </math>m<math> is odd}.
 
\end{cases}
 
\end{cases}
$$
+
</math>
Here $\delta_{p,2}$ is the Kronecker delta. Then
+
Here <math>\delta_{p,2}</math> is the Kronecker delta. Then
$$
+
:<math>
 
F_p(u,p^{-m-1} X\inv)= \pm(p^{(m+1)/2}X)^{-e_p(u)}F_p(u,X),
 
F_p(u,p^{-m-1} X\inv)= \pm(p^{(m+1)/2}X)^{-e_p(u)}F_p(u,X),
$$
+
</math>
where if $m$ is even then the ``$\pm$'' sign is positive,
+
where if <math>m</math> is even then the ``<math>\pm</math>'' sign is positive,
and if $m$ is odd then it is
+
and if <math>m</math> is odd then it is
$$
+
:<math>
 
\big(\det(u),(-1)^{(m-1)/2}\det(u)\big)_p\,(-1,-1)_p^{(m^2-1)/8}\,h_p(u)
 
\big(\det(u),(-1)^{(m-1)/2}\det(u)\big)_p\,(-1,-1)_p^{(m^2-1)/8}\,h_p(u)
$$
+
</math>
with $(\cdot,\cdot)_p$ the Hilbert symbol and $h_p$ the Hasse invariant  
+
with <math>(\cdot,\cdot)_p</math> the Hilbert symbol and <math>h_p</math> the Hasse invariant  
 
as described above.
 
as described above.
  
  
 
%Katsurada used this functional equation to write down complicated
 
%Katsurada used this functional equation to write down complicated
%(especially for $p=2$) recursion relations for the $F_p$-polynomials
+
%(especially for <math>p=2</math>) recursion relations for the <math>F_p</math>-polynomials
%in terms of the local invariants of $u$, data that identify the
+
%in terms of the local invariants of <math>u</math>, data that identify the
%$\GLnZp$-equivalence class of $u$.
+
%<math>\GLnZp</math>-equivalence class of <math>u</math>.
%Hence, for a given $u$ all $F_p(u,X)$ can be computed from the
+
%Hence, for a given <math>u</math> all <math>F_p(u,X)</math> can be computed from the
%genus symbol of $u$, the amalgamation of the local invariants.  
+
%genus symbol of <math>u</math>, the amalgamation of the local invariants.  
 
%O. King \cite{king03} wrote a program to compute these polynomials,
 
%O. King \cite{king03} wrote a program to compute these polynomials,
 
%which has since been modified to accept higher degree input, and is now being made publically  
 
%which has since been modified to accept higher degree input, and is now being made publically  
135번째 줄: 134번째 줄:
 
==Fourier Coefficient Formula==
 
==Fourier Coefficient Formula==
  
Let $n$ be a positive integer.
+
Let <math>n</math> be a positive integer.
For any $t\in\Xnsemi$ we have $t\sim u\oplus0_{n-m}$ under
+
For any <math>t\in\Xnsemi</math> we have <math>t\sim u\oplus0_{n-m}</math> under
$\GLnZ$-equivalence, where $m={\rm rank}(t)\in\Znn$ and $u\in\Xm$.
+
<math>\GLnZ</math>-equivalence, where <math>m={\rm rank}(t)\in\Znn</math> and <math>u\in\Xm</math>.
 
The following result may be found in \cite{katsurada99, katsurada10}.  
 
The following result may be found in \cite{katsurada99, katsurada10}.  
  
;theorem Siegel Eisenstein Fourier Coefficient Formula
+
;theorem (Siegel Eisenstein Fourier Coefficient Formula)
Let $n$ be a positive integer and $k>n+1$ an even integer.
+
Let <math>n</math> be a positive integer and <math>k>n+1</math> an even integer.
Let $t\in\Xnsemi$, and let $u$, $D_u$, $f_u$, and $\chi_{D_u}$
+
Let <math>t\in\Xnsemi</math>, and let <math>u</math>, <math>D_u</math>, <math>f_u</math>, and <math>\chi_{D_u}</math>
be as above. Let $c\suppm_k=2^{-\lfloor(m+1)/2\rfloor}
+
be as above. Let <math>c\suppm_k=2^{-\lfloor(m+1)/2\rfloor}
\zeta(1-k)\prod_{i=1}^{\lfloor m/2\rfloor}\zeta(1-2k+2i)$.
+
\zeta(1-k)\prod_{i=1}^{\lfloor m/2\rfloor}\zeta(1-2k+2i)</math>.
 
Then
 
Then
$$
+
:<math>
 
\fc t\Enk={1}/{c_k\suppm}\cdot\begin{cases}
 
\fc t\Enk={1}/{c_k\suppm}\cdot\begin{cases}
 
L(\chi_{D_u},1-k+m/2)\prod_{p\mid f_u}F_p(u,p^{k-m-1}),
 
L(\chi_{D_u},1-k+m/2)\prod_{p\mid f_u}F_p(u,p^{k-m-1}),
&\text{$m$ even},\\
+
&\text{</math>m<math> even},\\
 
\prod_{p:\ord p{(1/2)\det(2u)}>0}F_p(u,p^{k-m-1})
 
\prod_{p:\ord p{(1/2)\det(2u)}>0}F_p(u,p^{k-m-1})
&\text{$m$ odd}.
+
&\text{</math>m<math> odd}.
 
\end{cases}
 
\end{cases}
$$
+
</math>
  
  
The Riemann zeta values and the quadratic $L$ value in the formula
+
The Riemann zeta values and the quadratic <math>L</math> value in the formula
have the form $\zeta(1-j)=-B_j/j$ and $L(\chi,1-j)=-B_j(\chi)/j$
+
have the form <math>\zeta(1-j)=-B_j/j</math> and <math>L(\chi,1-j)=-B_j(\chi)/j</math>
with the $B_j$ basic or quadratic Bernoulli numbers,
+
with the <math>B_j</math> basic or quadratic Bernoulli numbers,
 
and so they are known rational numbers:  
 
and so they are known rational numbers:  
if $f$ is the conductor of $\chi$, then  
+
if <math>f</math> is the conductor of <math>\chi</math>, then  
$\sum_{a=1}^f \chi(a) \frac{te^{at}}{e^{ft}-1} = \sum_{j=0}^{\infty}
+
<math>\sum_{a=1}^f \chi(a) \frac{te^{at}}{e^{ft}-1} = \sum_{j=0}^{\infty}
B_j(\chi) \frac{t^j}{j!}$ (\cite{aik14}, page {53}).
+
B_j(\chi) \frac{t^j}{j!}</math> (\cite{aik14}, page {53}).
The genus symbol of any $u\in\Xm$ is easy to compute,
+
The genus symbol of any <math>u\in\Xm</math> is easy to compute,
and then our program gives $F_p(u,p^{k-m-1})$.
+
and then our program gives <math>F_p(u,p^{k-m-1})</math>.
  
 
Thus Siegel Eisenstein series Fourier coefficients are tractable.
 
Thus Siegel Eisenstein series Fourier coefficients are tractable.
180번째 줄: 179번째 줄:
 
\end{matrix}\right]\in\Xsix.
 
\end{matrix}\right]\in\Xsix.
 
\end{equation*}
 
\end{equation*}
Our genus symbol program takes $2t$ as an input and returns the genus
+
Our genus symbol program takes <math>2t</math> as an input and returns the genus
symbol $4^{-2}_4\, 3^{-1}$.  
+
symbol <math>4^{-2}_4\, 3^{-1}</math>.  
Our $F_p$ polynomial program takes this genus symbol and the
+
Our <math>F_p</math> polynomial program takes this genus symbol and the
determinant $\det(2t)=48$ as input and returns the $F_p(t,X)$
+
determinant <math>\det(2t)=48</math> as input and returns the <math>F_p(t,X)</math>
polynomials for all~$p\mid2\det(2t)$,
+
polynomials for all~<math>p\mid2\det(2t)</math>,
$$
+
:<math>
 
\left[F_2(X),F_3(X)\right]=\left[1+24X+256X^2+3072X^3+16384X^4,1\right].
 
\left[F_2(X),F_3(X)\right]=\left[1+24X+256X^2+3072X^3+16384X^4,1\right].
$$
+
</math>
 
These data make no reference to any particular Eisenstein series
 
These data make no reference to any particular Eisenstein series
degree or weight. With these $F_p$ polynomials and the weight $k=16$
+
degree or weight. With these <math>F_p</math> polynomials and the weight <math>k=16</math>
 
as input, our Eisenstein series Fourier coefficient program returns
 
as input, our Eisenstein series Fourier coefficient program returns
$$
+
:<math>
 
\fc {t}{E^{(6)}_{16}}
 
\fc {t}{E^{(6)}_{16}}
 
=\frac{ 9780154654408147370255260881715200}
 
=\frac{ 9780154654408147370255260881715200}
 
{13912726954911229324966739363569}\,.  
 
{13912726954911229324966739363569}\,.  
$$
+
</math>
  
 
==related items==
 
==related items==
205번째 줄: 204번째 줄:
 
* https://drive.google.com/file/d/0B8XXo8Tve1cxMVhLZzhDSGF6QUk/view
 
* https://drive.google.com/file/d/0B8XXo8Tve1cxMVhLZzhDSGF6QUk/view
 
* http://siegelmodularforms.org/pages/degree3/
 
* http://siegelmodularforms.org/pages/degree3/
 +
* https://math.berkeley.edu/~reb/papers/siegel/index.html
  
 
==articles==
 
==articles==
 
* https://www.overleaf.com/5607323trfxjs#/18124513/
 
* https://www.overleaf.com/5607323trfxjs#/18124513/
 +
 +
[[분류:quadratic forms]]
 +
[[분류:migrate]]

2020년 11월 16일 (월) 02:52 기준 최신판

introduction

\( \newcommand\supparen[1]{^{(#1)}} \newcommand\suppn{\supparen n} \newcommand\Enk{E_k\suppn} \newcommand\bs{\backslash} \newcommand\Gamn{\Gamma_{\!n}} \newcommand\UHP{\mathcal H} \newcommand\UHPn{\UHP_n} \newcommand\smallmat[4]{\left[\begin{smallmatrix} {#1}&{#2}\\{#3}&{#4}\end{smallmatrix}\right]} \newcommand\smallmatabcd{\smallmat abcd} \newcommand\SpnZ{\Sp n\Z} \newcommand\Sp[2]{\operatorname{Sp}_{#1}(#2)} \newcommand\siX[1]{{\mathcal X}_{#1}} \newcommand\Xn{\siX n} \newcommand\Xnsemi{\siX n^{\rm semi}} \newcommand\Xsix{\siX 6} \newcommand\fc[2]{a(#1;#2)} \newcommand\e{\rm e} \newcommand\ip[2]{\langle #1,#2\rangle} \newcommand\suppnminusone{\supparen {n-1}} \newcommand\Enminusonek{E_k\suppnminusone} \newcommand\Eonek{E_k\supparen1} \newcommand\Zp{\Z_p} \newcommand\Xm{\siX m} \newcommand\Qp{\Q_p} \newcommand\Qpx{\Qp^\times} \newcommand\GL[2]{\operatorname{GL}_{#1}(#2)} \newcommand\GLnZ{\GL n\Z} \newcommand\GLnZp{\GL n{\Zp}} \newcommand\Znn{\Z_{\ge0}} \newcommand{\ord}[2]{{\rm ord}_{#1}(#2)} \newcommand\inv{^{-1}} \newcommand\suppm{\supparen m} \) For any positive integer degree \(n\) and even integer weight \(k>n+1\), the Siegel Eisenstein series of weight \(k\) and degree \(n\) is \[ \Enk(z)=\sum_{\gamma\in P_\Z\bs\Gamn}j(\gamma,z)^{-k}. \] Here \(z\) lies in the Siegel upper half space \(\UHPn\), \(j(g,z)=\det (cz+d)\), and the summand \(j(\gamma,z)^{-k}\) is \(1\) for the Siegel parabolic subgroup \(P_\Z=\{\smallmat ab0d\}\) of the integral symplectic group \(\Gamn=\SpnZ\).

This Eisenstein series has the Fourier series representation \[ \Enk(z)=\sum_{t\in\Xnsemi}\fc t{\Enk}\,\e(\ip tz), \] where \(\Xnsemi\) denotes the set of semi-integral positive semidefinite \(n\)-by-\(n\) matrices. The Siegel \(\Phi\) map takes Eisenstein series to Eisenstein series, \(\Phi\Enk=\Enminusonek\) and \(\Phi\Eonek=1\), so it suffices to compute the Fourier coefficients of Eisenstein series for definite indices \(t\); the set of such matrices is denoted \(\Xn\). Eisenstein series are central to number theory, from Garrett's pullback formula to the Langlands program. The algorithmic computation of the Siegel Eisenstein series Fourier coefficients \(\fc t\Enk\) began with C. L. Siegel and was completed by H. Katsurada. The Fourier coefficient formula for definite indices, to be elaborated below, is \[ \fc t\Enk= \dfrac{2^{\lfloor \frac{n+1}{2} \rfloor} \prod_{p}F_p(t,p^{k-n-1})} {\zeta(1-k)\prod_{i=1}^{\lfloor n/2\rfloor}\zeta(1-2k+2i)} \cdot\begin{cases} L(\chi_{D_t},1-k+n/2)&\text{\]n\( even},\\ 1&\text{\)n\( odd}. \end{cases} \) The Fourier coefficient depends only on the genus of its index \(t\). In fact the polynomial \(F_p(t,X)\in\Z[X]\) depends only on the class of \(t\) over \(\Zp\).

\(F_p\)-polynomials

Polynomials \(F_p(u,X)\in\Z[X]\) for \(p\) prime and \(u\in\Xm\) appear in the Siegel Eisenstein series Fourier coefficient formula. The first author of this paper wrote a program to compute these polynomials \cite{king03}, which has since been modified to accept higher degree input. We refer to \cite{katsurada99} for the definition of the \(F_p\) polynomials; there Katsurada proved a functional equation for these polynomials, which was an important step in his establishment of their recurrence relations. We review this functional equation because it serves as a check on computations. The functional equation makes reference to the Hilbert symbol and to the Hasse invariant. To review, for \(a,b\in\Qpx\) the Hilbert symbol \((a,b)_p\) is \(1\) if \(aX^2+bY^2=Z^2\) has nontrivial solutions in \(\Qp^3\) and \(-1\) if not. For \(u\in\GL m\Qp^{\rm sym}\) the Hasse invariant of \(u\) is \(h_p(u)=\prod_{i\le j}(a_i,a_j)_p\) where \(u\) is \(\GL m\Qp\)-equivalent to the diagonal matrix having entries \(a_1,\cdots,a_m\). If \(m\) is even then \((-1)^{m/2}\det(2u)\) takes the form \(D_uf_u^2\) where \(D_u\) is \(1\) or the fundamental discriminant of a quadratic number field and \(f_u\) is a positive integer; let \(\chi_{D_u}\) denote the quadratic Dirichlet character of conductor \(|D_u|\). For rank \(m=0\), the empty matrix has determinant \(1\) by convention and so \(D_u=f_u=1\).

theorem [Katsurada's Functional Equation]

Let \(u\in\Xm\). Set \[ e_p(u)=\begin{cases} 2(\lfloor\frac{\ord p{\det(2u)}-1-\delta_{p,2}}{2}\rfloor+\chi_{D_u}(p)^2) &\text{if \]m\( is even},\\ \ord p{\det(2u)/2}&\text{if \)m\( is odd}. \end{cases} \) Here \(\delta_{p,2}\) is the Kronecker delta. Then \[ F_p(u,p^{-m-1} X\inv)= \pm(p^{(m+1)/2}X)^{-e_p(u)}F_p(u,X), \] where if \(m\) is even then the ``\(\pm\) sign is positive, and if \(m\) is odd then it is \[ \big(\det(u),(-1)^{(m-1)/2}\det(u)\big)_p\,(-1,-1)_p^{(m^2-1)/8}\,h_p(u) \] with \((\cdot,\cdot)_p\) the Hilbert symbol and \(h_p\) the Hasse invariant as described above.


%Katsurada used this functional equation to write down complicated %(especially for \(p=2\)) recursion relations for the \(F_p\)-polynomials %in terms of the local invariants of \(u\), data that identify the %\(\GLnZp\)-equivalence class of \(u\). %Hence, for a given \(u\) all \(F_p(u,X)\) can be computed from the %genus symbol of \(u\), the amalgamation of the local invariants. %O. King \cite{king03} wrote a program to compute these polynomials, %which has since been modified to accept higher degree input, and is now being made publically %available.

Fourier Coefficient Formula

Let \(n\) be a positive integer. For any \(t\in\Xnsemi\) we have \(t\sim u\oplus0_{n-m}\) under \(\GLnZ\)-equivalence, where \(m={\rm rank}(t)\in\Znn\) and \(u\in\Xm\). The following result may be found in \cite{katsurada99, katsurada10}.

theorem (Siegel Eisenstein Fourier Coefficient Formula)

Let \(n\) be a positive integer and \(k>n+1\) an even integer. Let \(t\in\Xnsemi\), and let \(u\), \(D_u\), \(f_u\), and \(\chi_{D_u}\) be as above. Let \(c\suppm_k=2^{-\lfloor(m+1)/2\rfloor} \zeta(1-k)\prod_{i=1}^{\lfloor m/2\rfloor}\zeta(1-2k+2i)\). Then \[ \fc t\Enk={1}/{c_k\suppm}\cdot\begin{cases} L(\chi_{D_u},1-k+m/2)\prod_{p\mid f_u}F_p(u,p^{k-m-1}), &\text{\]m\( even},\\ \prod_{p:\ord p{(1/2)\det(2u)}>0}F_p(u,p^{k-m-1}) &\text{\)m\( odd}. \end{cases} \)


The Riemann zeta values and the quadratic \(L\) value in the formula have the form \(\zeta(1-j)=-B_j/j\) and \(L(\chi,1-j)=-B_j(\chi)/j\) with the \(B_j\) basic or quadratic Bernoulli numbers, and so they are known rational numbers: if \(f\) is the conductor of \(\chi\), then \(\sum_{a=1}^f \chi(a) \frac{te^{at}}{e^{ft}-1} = \sum_{j=0}^{\infty} B_j(\chi) \frac{t^j}{j!}\) (\cite{aik14}, page {53}). The genus symbol of any \(u\in\Xm\) is easy to compute, and then our program gives \(F_p(u,p^{k-m-1})\).

Thus Siegel Eisenstein series Fourier coefficients are tractable.

example

For example, consider the Fourier coefficient index \begin{equation*} t=\frac12\left[\begin{matrix} 2 & 1 & 1 & 0 & 1 & 2 \\ 1 & 4 & 2 & 2 & 0 & 1 \\ 1 & 2 & 4 & 2 & 0 & 0 \\ 0 & 2 & 2 & 4 & 2 & 2 \\ 1 & 0 & 0 & 2 & 4 & 2 \\ 2 & 1 & 0 & 2 & 2 & 8 \end{matrix}\right]\in\Xsix. \end{equation*} Our genus symbol program takes \(2t\) as an input and returns the genus symbol \(4^{-2}_4\, 3^{-1}\). Our \(F_p\) polynomial program takes this genus symbol and the determinant \(\det(2t)=48\) as input and returns the \(F_p(t,X)\) polynomials for all~\(p\mid2\det(2t)\), \[ \left[F_2(X),F_3(X)\right]=\left[1+24X+256X^2+3072X^3+16384X^4,1\right]. \] These data make no reference to any particular Eisenstein series degree or weight. With these \(F_p\) polynomials and the weight \(k=16\) as input, our Eisenstein series Fourier coefficient program returns \[ \fc {t}{E^{(6)}_{16}} =\frac{ 9780154654408147370255260881715200} {13912726954911229324966739363569}\,. \]

related items

computational resource

articles