"Cyclotomic numbers and Chebyshev polynomials"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
(Undo imported revision 33826 by user imported>Pythagoras0)
태그: 편집 취소
17번째 줄: 17번째 줄:
  
 
* [http://pythagoras0.springnote.com/pages/4682477 체비셰프 다항식]
 
* [http://pythagoras0.springnote.com/pages/4682477 체비셰프 다항식]
* http://mathworld.wolfram.com/ChebyshevPolynomialoftheSecondKind.html<br> also obey the interesting [http://mathworld.wolfram.com/Determinant.html determinant] identity
+
* http://mathworld.wolfram.com/ChebyshevPolynomialoftheSecondKind.html also obey the interesting [http://mathworld.wolfram.com/Determinant.html determinant] identity
  
 
 
 
 
41번째 줄: 41번째 줄:
 
==articles==
 
==articles==
  
* [http://www.jstor.org/stable/2691048 Golden Fields: A Case for the Heptagon]<br>
+
* [http://www.jstor.org/stable/2691048 Golden Fields: A Case for the Heptagon]
 
** Peter Steinbach, Mathematics Magazine Vol. 70, No. 1 (Feb., 1997), pp. 22-31
 
** Peter Steinbach, Mathematics Magazine Vol. 70, No. 1 (Feb., 1997), pp. 22-31
  
 
[[분류:개인노트]]
 
[[분류:개인노트]]
 
[[Category:quantum dimensions]]
 
[[Category:quantum dimensions]]

2020년 11월 16일 (월) 02:30 판

introduction

\[d_i=\frac{\sin \frac{(i+1)\pi}{k+2}}{\sin \frac{\pi}{k+2}}\] satisfies \[d_i^2=1+d_{i-1}d_{i+1}\] where \(d_0=1\), \(d_k=1\)

 

diagonals of regular polygon

  • length of hepagon

$$d_i = \frac{\sin (\pi (i+1)/7)}{\sin (\pi/7)} $$

 

chebyshev polynomials

 

 

history

 

 

related items

 

 

articles