"Strange identity of Freudenthal-de Vries"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
11번째 줄: 11번째 줄:
 
* Thiel, Marko, and Nathan Williams. “Strange Expectations.” arXiv:1508.05293 [math], August 21, 2015. http://arxiv.org/abs/1508.05293.
 
* Thiel, Marko, and Nathan Williams. “Strange Expectations.” arXiv:1508.05293 [math], August 21, 2015. http://arxiv.org/abs/1508.05293.
 
* H. FREUDENTHAL and H. DE VRIES. “Linear Lie groups”, New York: Academic Press, 1969.
 
* H. FREUDENTHAL and H. DE VRIES. “Linear Lie groups”, New York: Academic Press, 1969.
* [http://qjmath.oxfordjournals.org/cgi/reprint/51/3/295.pdf AN ELEMENTARY PROOF OF THE 'STRANGE FORMULA' OF FREUDENTHAL AND DE Vries]<br>
+
* [http://qjmath.oxfordjournals.org/cgi/reprint/51/3/295.pdf AN ELEMENTARY PROOF OF THE 'STRANGE FORMULA' OF FREUDENTHAL AND DE Vries]
**  John Burn, 2004<br>
+
**  John Burn, 2004
 
[[분류:개인노트]]
 
[[분류:개인노트]]
 
[[분류:math and physics]]
 
[[분류:math and physics]]
 
[[분류:Lie theory]]
 
[[분류:Lie theory]]
 
[[분류:migrate]]
 
[[분류:migrate]]

2020년 11월 16일 (월) 02:35 판

introduction

  • Root Systems and Dynkin diagrams
  • \(\rho\) Weyl vector
  • Kac book 219p, 221p
  • strange formula \[\frac{\langle\rho,\rho\rangle}{2h^{\vee}}=\frac{\operatorname{dim}\mathfrak{g}}{24}\]
  • very strange formula
  • conformal anomaly \[m_{\Lambda}=\frac{(\Lambda+\rho)^2}{2(k+h^{\vee})}-\frac{\rho^2}{2h^{\vee}}=h_{\lambda}-\frac{c(k)}{24}\]

 

articles