"공변미분(covariant derivative)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
잔글 (찾아 바꾸기 – “</h5>” 문자열을 “==” 문자열로)
잔글 (찾아 바꾸기 – “<h5 (.*)">” 문자열을 “==” 문자열로)
1번째 줄: 1번째 줄:
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 수학노트 원문주소==
+
==이 항목의 수학노트 원문주소==
  
 
 
 
 
72번째 줄: 72번째 줄:
 
 
 
 
  
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">수학용어번역==
+
==수학용어번역==
  
 
*  단어사전<br>
 
*  단어사전<br>

2012년 11월 1일 (목) 13:24 판

이 항목의 수학노트 원문주소

 

 

개요

 

 

 

local expression

  • \(X=X^{i}\frac{\partial}{\partial x^{i}}\), \(Y=Y^{i}\frac{\partial}{\partial x^{i}}\)
  • 접속 (connection)
    \(\nabla_{X}Y = \sum_{k=1}^n\left( \sum_{i}X^{i} \frac{\partial Y^{k}}{\partial x^{i}}+\sum_{i,j}\Gamma_{ij}^k X^{i}Y^{j} \right)\frac{\partial}{\partial x^{k}}\)
  • 다양체 M의 coordinate chart 에서 \(\alpha(t)=(x^{1}(t),x^{2}(t),\cdots)\) 로 표현되는 곡선에 대한, 벡터장 \(Y\) 의 공변미분
    \(\frac{DY}{dt}= \sum_{i=1}^n\left(\frac{dY^{i}}{dt}+\Gamma_{jk}^i Y^{j}\frac{dx^{k}}{dt} \right)\frac{\partial}{\partial x^{i}}\)

 

 

 

평행이동

  • 벡터장 \(Y\) 의 공변미분이 0일 때, 즉
    \(\frac{DY}{dt}= \sum_{i=1}^n\left(\frac{dY^{i}}{dt}+\Gamma_{jk}^i Y^{j}\frac{dx^{k}}{dt} \right)\frac{\partial}{\partial x^{i}}=0\)

 

 

측지선

  • \(Y=\alpha'(t)\) 로 주어지는 경우,
    \(\frac{DY}{dt}= \sum_{i=1}^n\left(\frac{d^{2}x^{i}}{dt^{2}}+\Gamma_{jk}^i \frac{dx^j}{dt}\frac{dx^{k}}{dt} \right)\frac{\partial}{\partial x^{i}}\)
    \(\frac{DY}{dt}= 0\) 을 만족하는 경우, 곡선\(\alpha(t)=(x^{1}(t),x^{2}(t),\cdots)\)를 측지선 이라 한다

 

 

 

 

역사

 

 

 

메모

 

 

 

관련된 항목들

 

 

수학용어번역

 

 

매스매티카 파일 및 계산 리소스

 

 

사전 형태의 자료

 

 

리뷰논문, 에세이, 강의노트

 

 

 

관련논문

 

 

관련도서