"Mahler measure"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
imported>Pythagoras0
137번째 줄: 137번째 줄:
 
** Authors: David W. Boyd, Fernando Rodriguez-Villegas, Nathan M. Dunfield
 
** Authors: David W. Boyd, Fernando Rodriguez-Villegas, Nathan M. Dunfield
 
* C. J. Smyth, An explicit formula for the Mahler measure of a family of 3-variable polynomials, J. Th. Nombres Bordeaux 14 (2002), 683{700
 
* C. J. Smyth, An explicit formula for the Mahler measure of a family of 3-variable polynomials, J. Th. Nombres Bordeaux 14 (2002), 683{700
 +
* Boyd, David W. 1998. “Mahler’s Measure and Special Values of $L$-Functions.” Experimental Mathematics 7 (1): 37–82.
 
* Deninger, Christopher. [http://www.mathaware.org/journals/jams/1997-10-02/S0894-0347-97-00228-2/S0894-0347-97-00228-2.pdf Deligne periods of mixed motives, K-theory and the entropy of certain Zn-actions] Journal of the American Mathematical Society 10.2 (1997): 259-282.
 
* Deninger, Christopher. [http://www.mathaware.org/journals/jams/1997-10-02/S0894-0347-97-00228-2/S0894-0347-97-00228-2.pdf Deligne periods of mixed motives, K-theory and the entropy of certain Zn-actions] Journal of the American Mathematical Society 10.2 (1997): 259-282.
 
* '''[Smith1981]''' Smyth, C. J. 1981. “On Measures of Polynomials in Several Variables.” Bulletin of the Australian Mathematical Society 23 (1): 49–63. doi:http://dx.doi.org/10.1017/S0004972700006894.
 
* '''[Smith1981]''' Smyth, C. J. 1981. “On Measures of Polynomials in Several Variables.” Bulletin of the Australian Mathematical Society 23 (1): 49–63. doi:http://dx.doi.org/10.1017/S0004972700006894.

2014년 10월 29일 (수) 17:57 판

introduction

  • for a Laurent polynomial $P(x_1,\cdots, x_n)\in \mathbb{Z}[x_1^{\pm 1},\cdots,x_n^{\pm 1}]$, the (logarithmic) Mahler measure is defined to be

$$ \begin{aligned} m(P):&=\int_{0}^{1}\cdots \int_{0}^{1} \ln |P(e^{2\pi i \theta_1},\cdots, e^{2\pi i \theta_n})|\, d\theta_1\cdots d\theta_n\\ &= \frac{1}{(2\pi i)^n}\int_{|x_1|=\dots=|x_n|=1} \log|P(x_1,\dots,x_n)| \; \frac{dx_1}{x_1} \dots \frac{dx_n}{x_n} \end{aligned} $$


monic polynomial

  • For a monic polynomial in one variable $P \in \mathbb{C}[x]$ one can compute $m(P)$ by Jensen's formula

$$ \frac{1}{2\pi i}\int_{|x|=1} \log|P(x)| \; \frac{dx}{x} = \sum_{\alpha:P(\alpha)=0} \max(0,\log|\alpha|)\,, $$

  • but no explicit formula is known for polynomials in several variables.

example

  • $m(1 + x - x^3 - x^4 - x^5 - x^6 - x^7 + x^9 + x^{10})=0.1623576120\cdots$
  • $m(x^3-x-1)=0.28119957432\cdots$
  • $m(x^3+x+1)=0.382245085840\cdots$


Multivariate Mahler measure

Smyth

thm [Smith1981]

$$ m(1+x_1+x_2)=L_{-3}'(-1)=\frac{3\sqrt{3}}{4\pi}L_{-3}(2)=0.3230659472\cdots $$

$$ m(1+x_1+x_2+x_3)=14\zeta'(-2)=\frac{7}{2\pi^2}\zeta(3)=0.4262783988\cdots $$


Rodriguez-Villegas

conjecture

$$ m(1+x_1+x_2+x_3+x_4)=-L_{f}'(-1)=\frac{675\sqrt{15}}{16\pi^5}L_{f}(4)=0.5444125617\cdots $$

$$ m(1+x_1+x_2+x_3+x_4+x_5)=-8L_{g}'(-1)=\frac{648}{\pi^6}L_{g}(5)=0.6273170748\cdots $$ where $$ f(\tau)=\eta(3\tau)^3\eta(5\tau)^3+\eta(\tau)^3\eta(15\tau)^3 $$ and $$ g(\tau)=\eta(\tau)^2\eta(2\tau)^2\eta(3\tau)^2\eta(6\tau)^2 $$


Deninger

conjecture

$$ m(1+x+\frac{1}{x}+y+\frac{1}{y})=L_{15A}'(0)=\frac{15}{4\pi^2}L_{15A}(2)=0.2513304337\cdots $$



Boyd

conjecture

$$ m(1+x+\frac{1}{x}+y+\frac{1}{y}+xy+\frac{1}{xy})=L_{14A}'(0)=\frac{7}{2\pi^2}L_{14A}(2)=0.2274812230\cdots $$

$$ m(-1+x+\frac{1}{x}+y+\frac{1}{y}+xy+\frac{1}{xy})=L_{30A}'(0)=\frac{15}{2\pi^2}L_{30A}(2)=0.6168709387\cdots $$

$$ m(3+x+\frac{1}{x}+y+\frac{1}{y})=\frac{21}{2\pi^2}L(E_{21},2) $$

$$ m(12+x+\frac{1}{x}+y+\frac{1}{y})=\frac{24}{\pi^2}L(E_{48},2) $$

related items


computational resource


encyclopedia


expositions


lecture notes

articles

links