"단봉수열 (unimodal sequence)"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
Pythagoras0 (토론 | 기여) |
Pythagoras0 (토론 | 기여) |
||
(같은 사용자의 중간 판 5개는 보이지 않습니다) | |||
1번째 줄: | 1번째 줄: | ||
+ | ==개요== | ||
+ | * 유한수열 <math>a_0,a_1,\cdots, a_d</math>을 생각하자 | ||
+ | * 적당한 <math>0\le j\le d</math>가 존재하여 <math>a_0\le a_1\ \cdots \le a_d \ge a_{d+1}\cdots \ge a_{d}</math>을 만족하면 이를 단봉수열이라 한다 | ||
+ | |||
+ | |||
==관련된 항목들== | ==관련된 항목들== | ||
* [[로그볼록수열 (log concave sequence)]] | * [[로그볼록수열 (log concave sequence)]] | ||
+ | |||
+ | |||
+ | ==매스매티카 파일 및 계산 리소스== | ||
+ | * https://drive.google.com/file/d/0B8XXo8Tve1cxRXRFV1pYTVRTY2s/view | ||
6번째 줄: | 15번째 줄: | ||
* {{수학용어집|url=unimodal}} | * {{수학용어집|url=unimodal}} | ||
+ | |||
+ | ==리뷰, 에세이, 강의노트== | ||
+ | * F. Brenti, Log-concave and Unimodal sequences in Algebra, Combinatorics, and Geometry: an update, Contemporary Math., 178 (1994), 71-89 http://www.mat.uniroma2.it/~brenti/10.dvi | ||
+ | * R. Stanley, Log-concave and unimodal sequences in Algebra, Combinatorics and Geometry, Annals of the New York Academy of Sciences, 576 (1989), 500-534 http://dedekind.mit.edu/~rstan/pubs/pubfiles/72.pdf | ||
==관련논문== | ==관련논문== | ||
* Stanley, Richard P. 1980. “Unimodal Sequences Arising from Lie Algebras.” In Combinatorics, Representation Theory and Statistical Methods in Groups, 57:127–136. Lecture Notes in Pure and Appl. Math. New York: Dekker. http://www.ams.org/mathscinet-getitem?mr=588199. | * Stanley, Richard P. 1980. “Unimodal Sequences Arising from Lie Algebras.” In Combinatorics, Representation Theory and Statistical Methods in Groups, 57:127–136. Lecture Notes in Pure and Appl. Math. New York: Dekker. http://www.ams.org/mathscinet-getitem?mr=588199. | ||
* Hughes, J. W. B. 1977. “Lie Algebraic Proofs of Some Theorems on Partitions.” In Number Theory and Algebra, 135–155. New York: Academic Press. http://www.ams.org/mathscinet-getitem?mr=0491213. | * Hughes, J. W. B. 1977. “Lie Algebraic Proofs of Some Theorems on Partitions.” In Number Theory and Algebra, 135–155. New York: Academic Press. http://www.ams.org/mathscinet-getitem?mr=0491213. |
2020년 11월 16일 (월) 05:24 기준 최신판
개요
- 유한수열 \(a_0,a_1,\cdots, a_d\)을 생각하자
- 적당한 \(0\le j\le d\)가 존재하여 \(a_0\le a_1\ \cdots \le a_d \ge a_{d+1}\cdots \ge a_{d}\)을 만족하면 이를 단봉수열이라 한다
관련된 항목들
매스매티카 파일 및 계산 리소스
수학용어번역
- unimodal - 대한수학회 수학용어집
리뷰, 에세이, 강의노트
- F. Brenti, Log-concave and Unimodal sequences in Algebra, Combinatorics, and Geometry: an update, Contemporary Math., 178 (1994), 71-89 http://www.mat.uniroma2.it/~brenti/10.dvi
- R. Stanley, Log-concave and unimodal sequences in Algebra, Combinatorics and Geometry, Annals of the New York Academy of Sciences, 576 (1989), 500-534 http://dedekind.mit.edu/~rstan/pubs/pubfiles/72.pdf
관련논문
- Stanley, Richard P. 1980. “Unimodal Sequences Arising from Lie Algebras.” In Combinatorics, Representation Theory and Statistical Methods in Groups, 57:127–136. Lecture Notes in Pure and Appl. Math. New York: Dekker. http://www.ams.org/mathscinet-getitem?mr=588199.
- Hughes, J. W. B. 1977. “Lie Algebraic Proofs of Some Theorems on Partitions.” In Number Theory and Algebra, 135–155. New York: Academic Press. http://www.ams.org/mathscinet-getitem?mr=0491213.