"K-theory"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
Pythagoras0 (토론 | 기여) |
Pythagoras0 (토론 | 기여) |
||
36번째 줄: | 36번째 줄: | ||
==expositions== | ==expositions== | ||
* CHRISTOPHE SOULE, [http://www.ihes.fr/~soule/soulehangzhou.pdf HIGHER K-THEORY OF ALGEBRAIC INTEGERS AND THE COHOMOLOGY OF ARITHMETIC GROUPS] | * CHRISTOPHE SOULE, [http://www.ihes.fr/~soule/soulehangzhou.pdf HIGHER K-THEORY OF ALGEBRAIC INTEGERS AND THE COHOMOLOGY OF ARITHMETIC GROUPS] | ||
− | * Arlettaz, D. 2000. “Algebraic | + | * Arlettaz, D. 2000. “Algebraic <math>K</math>-theory of rings from a topological viewpoint.” Publicacions Matemàtiques 44 (1) (January 11): 3–84. |
* [http://www.jstor.org/stable/2318406 an introduction to algebraic K-theory] | * [http://www.jstor.org/stable/2318406 an introduction to algebraic K-theory] | ||
** T. Y. Lam and M. K. Siu, The American Mathematical Monthly, Vol. 82, No. 4 (Apr., 1975), pp. 329-364 | ** T. Y. Lam and M. K. Siu, The American Mathematical Monthly, Vol. 82, No. 4 (Apr., 1975), pp. 329-364 |
2020년 11월 16일 (월) 04:26 판
introduction
major results
- Norm residue isomorphism theorem
- isomorphism from Milnor K-theory mod l to étale cohomology
- motivic Bloch–Kato conjecture
- generalization of the Milnor conjecture
- consequence : Quillen–Lichtenbaum conjecture
number fields
encyclopedia
books
- Charles Weibel, The K-book: An introduction to algebraic K-theory
- Algebra, K-theory, groups, and education
expositions
- CHRISTOPHE SOULE, HIGHER K-THEORY OF ALGEBRAIC INTEGERS AND THE COHOMOLOGY OF ARITHMETIC GROUPS
- Arlettaz, D. 2000. “Algebraic \(K\)-theory of rings from a topological viewpoint.” Publicacions Matemàtiques 44 (1) (January 11): 3–84.
- an introduction to algebraic K-theory
- T. Y. Lam and M. K. Siu, The American Mathematical Monthly, Vol. 82, No. 4 (Apr., 1975), pp. 329-364
- K-THEORY. An elementary introduction
- Max Karoubi. Conference at the Clay Mathematics Research Academy
- The development of Algebraic K-theory before 1980
- Charles A. Weibel
- A brief glance at K-theory
- A BRIEF GUIDE TO ORDINARY K-THEORY