"Basic probability theory"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
(새 문서: ==introduction== * Let $(\Omega, \mathcal{F}, P)$ be probability space * A real-valued function $X : \Omega\to \mathbb{R}$ is called a random variable * let $A\subseteq \mathbb{R}$ be...)
 
 
(다른 사용자 한 명의 중간 판 하나는 보이지 않습니다)
1번째 줄: 1번째 줄:
 
==introduction==
 
==introduction==
* Let $(\Omega, \mathcal{F}, P)$ be probability space
+
* Let <math>(\Omega, \mathcal{F}, P)</math> be probability space
* A real-valued function $X : \Omega\to \mathbb{R}$ is called a random variable
+
* A real-valued function <math>X : \Omega\to \mathbb{R}</math> is called a random variable
* let $A\subseteq \mathbb{R}$ be the range of $X$, $A=\{s|X(s)=x,s\in S\}$. We call $A$ the space of $X$
+
* let <math>A\subseteq \mathbb{R}</math> be the range of <math>X</math>, <math>A=\{s|X(s)=x,s\in S\}</math>. We call <math>A</math> the space of <math>X</math>
* $\{X=x\}$ denote the subset $\{s|X(s)=x\}$ of $\mathbb{R}$
+
* <math>\{X=x\}</math> denote the subset <math>\{s|X(s)=x\}</math> of <math>\mathbb{R}</math>
* the induced probability measure $P_X : \mathbb{R}\to [0,1]$
+
* the induced probability measure <math>P_X : \mathbb{R}\to [0,1]</math>
* probability density function $f : \mathbb{R}\to [0,\infty)$ of $X$ satisfies
+
* probability density function <math>f : \mathbb{R}\to [0,\infty)</math> of <math>X</math> satisfies
$$
+
:<math>
 
P_{X}(X\in A)=\int_A f(x)\, dx=1
 
P_{X}(X\in A)=\int_A f(x)\, dx=1
$$
+
</math>
 
and  
 
and  
$$
+
:<math>
 
P_{X}(X\in B)=\int_B f(x)\, dx
 
P_{X}(X\in B)=\int_B f(x)\, dx
$$
+
</math>
for $B\subseteq A$.
+
for <math>B\subseteq A</math>.
  
  
 
[[분류:Probability]]
 
[[분류:Probability]]
 +
[[분류:migrate]]

2020년 11월 16일 (월) 05:26 기준 최신판

introduction

  • Let \((\Omega, \mathcal{F}, P)\) be probability space
  • A real-valued function \(X : \Omega\to \mathbb{R}\) is called a random variable
  • let \(A\subseteq \mathbb{R}\) be the range of \(X\), \(A=\{s|X(s)=x,s\in S\}\). We call \(A\) the space of \(X\)
  • \(\{X=x\}\) denote the subset \(\{s|X(s)=x\}\) of \(\mathbb{R}\)
  • the induced probability measure \(P_X : \mathbb{R}\to [0,1]\)
  • probability density function \(f : \mathbb{R}\to [0,\infty)\) of \(X\) satisfies

\[ P_{X}(X\in A)=\int_A f(x)\, dx=1 \] and \[ P_{X}(X\in B)=\int_B f(x)\, dx \] for \(B\subseteq A\).