"Tilting modules for quantum groups"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
 
(다른 사용자 한 명의 중간 판 8개는 보이지 않습니다)
1번째 줄: 1번째 줄:
 
==introduction==
 
==introduction==
* modules for $U_q(\mathfrak{g})$
+
* modules for <math>U_q(\mathfrak{g})</math>
* [[Verma modules]] $M_{\lambda}=U_q(\mathfrak{g})\otimes_{U_q(\mathfrak{b})}\mathbb{C}_{\lambda}$
+
* [[Verma modules]] <math>M_{\lambda}=U_q(\mathfrak{g})\otimes_{U_q(\mathfrak{b})}\mathbb{C}_{\lambda}</math>
 
* Weyl modules : quotients of Verma modules
 
* Weyl modules : quotients of Verma modules
$$
+
:<math>
W_{\lambda}=M_{\lambda}/\rm{span}(M_{s_i\cdot \lambda})
+
W_{\lambda}=M_{\lambda}/\operatorname{span}(M_{s_i\cdot \lambda})
$$
+
</math>
* a tilting module is a module $T$ that admies a filtration whose associated graded pieces are Weyl modules
+
* a tilting module is a module <math>T</math> that admits a filtration whose associated graded pieces are Weyl modules and that admits another filtration whose associated graded are dual Weyl modules
 +
 
 +
 
 +
==expositions==
 +
* http://sms.cam.ac.uk/media/642709
 +
 
 +
 
 +
==articles==
 +
* Hazi, Amit. “Balanced Semisimple Filtrations for Tilting Modules.” arXiv:1510.02596 [math], October 9, 2015. http://arxiv.org/abs/1510.02596.
 +
* Andersen, Henning Haahr, Catharina Stroppel, and Daniel Tubbenhauer. “Cellular Structures Using <math>\textbf{U}_q</math>-Tilting Modules.” arXiv:1503.00224 [math], March 1, 2015. http://arxiv.org/abs/1503.00224.
 +
* Andersen, Henning Haahr, and Masaharu Kaneda. 2009. “Rigidity of Tilting Modules.” arXiv:0909.2935 [math] (September 16). http://arxiv.org/abs/0909.2935.
 +
* Andersen, Henning Haahr, and Jan Paradowski. 1995. “Fusion Categories Arising from Semisimple Lie Algebras.” Communications in Mathematical Physics 169 (3) (May 1): 563–588. doi:[http://dx.doi.org/10.1007/BF02099312 10.1007/BF02099312].
 +
[[분류:migrate]]

2020년 11월 16일 (월) 04:27 기준 최신판

introduction

  • modules for \(U_q(\mathfrak{g})\)
  • Verma modules \(M_{\lambda}=U_q(\mathfrak{g})\otimes_{U_q(\mathfrak{b})}\mathbb{C}_{\lambda}\)
  • Weyl modules : quotients of Verma modules

\[ W_{\lambda}=M_{\lambda}/\operatorname{span}(M_{s_i\cdot \lambda}) \]

  • a tilting module is a module \(T\) that admits a filtration whose associated graded pieces are Weyl modules and that admits another filtration whose associated graded are dual Weyl modules


expositions


articles

  • Hazi, Amit. “Balanced Semisimple Filtrations for Tilting Modules.” arXiv:1510.02596 [math], October 9, 2015. http://arxiv.org/abs/1510.02596.
  • Andersen, Henning Haahr, Catharina Stroppel, and Daniel Tubbenhauer. “Cellular Structures Using \(\textbf{U}_q\)-Tilting Modules.” arXiv:1503.00224 [math], March 1, 2015. http://arxiv.org/abs/1503.00224.
  • Andersen, Henning Haahr, and Masaharu Kaneda. 2009. “Rigidity of Tilting Modules.” arXiv:0909.2935 [math] (September 16). http://arxiv.org/abs/0909.2935.
  • Andersen, Henning Haahr, and Jan Paradowski. 1995. “Fusion Categories Arising from Semisimple Lie Algebras.” Communications in Mathematical Physics 169 (3) (May 1): 563–588. doi:10.1007/BF02099312.