"Jacobi's theta function from a representation theoretic viewpoint"의 두 판 사이의 차이
imported>Pythagoras0 |
Pythagoras0 (토론 | 기여) |
||
(다른 사용자 한 명의 중간 판 4개는 보이지 않습니다) | |||
9번째 줄: | 9번째 줄: | ||
* unitary operator | * unitary operator | ||
* statement of the Stone-von Neumann theorem | * statement of the Stone-von Neumann theorem | ||
− | * | + | * <math>C\Omega + D</math> is invertible and <math>\Im{\gamma(\Omega)}>0 </math> |
* why consider conjugate linear functionals? | * why consider conjugate linear functionals? | ||
− | ** a given sesquilinear form | + | ** a given sesquilinear form <math>\langle \cdot, \cdot \rangle</math> determines an isomorphism of <math>V</math> with the complex conjugate of the dual space |
− | * equivariant action on | + | * equivariant action on <math>\mathcal{H}_{\infty}</math> and <math>\mathcal{H}_{-\infty}</math> |
==overview== | ==overview== | ||
− | * | + | * <math>g\in \mathbb{Z}</math>, <math>g\geq 1</math> |
− | * | + | * <math>V=(\mathbb{R}^{2g},A)</math>, where <math>A</math> is the symplectic form <math>A(x,y)=^tx_1y_2-^tx_2y_1</math>, <math>2g</math>-dimensional symplectic space |
− | * symplectic group, isometry of | + | * symplectic group, isometry of <math>V</math>, <math>\gamma</math> s.t. <math>A(\gamma x,\gamma y)=A(x,y)</math> |
− | * | + | * <math>Sp_{2g}(\mathbb{R})=\{M\in \operatorname{GL}_{2g}(\mathbb{R})|M^T J_{n} M = J_{n}\}</math> where |
− | + | :<math> | |
J_{n} =\begin{pmatrix}0 & I_n \\-I_n & 0 \\\end{pmatrix} | J_{n} =\begin{pmatrix}0 & I_n \\-I_n & 0 \\\end{pmatrix} | ||
− | + | </math> | |
− | * representation of Heisenberg group | + | * representation of Heisenberg group <math>H(2g, \mathbb{R})</math> on a Hilbert space <math>\mathcal{H}</math> |
− | * Stone-von Neumann theorem -> projective representation of | + | * Stone-von Neumann theorem -> projective representation of <math>Sp_{2g}(\mathbb{R})</math> on <math>\mathcal{H}</math> |
− | * Weil representation of | + | * Weil representation of <math>Mp(2g,\mathbb{R})</math>, double cover of the symplectic group |
− | * interpret | + | * interpret <math>\Theta</math> as representation theoretic quantity |
− | * transformation properties of theta function follows from the action of | + | * transformation properties of theta function follows from the action of <math>Mp(2g,\mathbb{R})</math> and <math>H(2g,\mathbb{R})</math> on <math>\mathcal{H}</math> |
==theta functions== | ==theta functions== | ||
===Jacobi theta function=== | ===Jacobi theta function=== | ||
− | * | + | * <math>\theta:\mathbb{C}\times \mathbb{H}\to \mathbb{C}</math> |
− | + | :<math> | |
\theta (z,\tau)= | \theta (z,\tau)= | ||
\sum_{n \in \mathbb{Z}} | \sum_{n \in \mathbb{Z}} | ||
e^{\pi i n^2 \tau} \, | e^{\pi i n^2 \tau} \, | ||
\E^{2 \pi i n z},\, \tau\in \mathbb{H},z\in \mathbb{C} | \E^{2 \pi i n z},\, \tau\in \mathbb{H},z\in \mathbb{C} | ||
− | + | </math> | |
− | * for | + | * for <math>a,b\in \mathbb{Z}</math>, |
− | + | :<math>\theta (z+a\tau +b,\tau)=\exp(-\pi i a^2 \tau -2\pi i az)\theta(z,\tau)</math> | |
− | * for | + | * for <math>\gamma=\left( |
\begin{array}{cc} | \begin{array}{cc} | ||
a & b \\ | a & b \\ | ||
c & d \\ | c & d \\ | ||
\end{array} | \end{array} | ||
− | \right)\in SL_2(\mathbb{Z}) | + | \right)\in SL_2(\mathbb{Z})</math> and <math>ac,bd</math> even, we have |
− | + | :<math> | |
\theta\left(\frac{z}{c\tau+d},\frac{a\tau+b}{c\tau+d}\right) = \zeta_{\gamma}(c\tau+d)^{1/2}\exp(\frac{\pi i cz^2}{c\tau+d})\theta(z,\tau) | \theta\left(\frac{z}{c\tau+d},\frac{a\tau+b}{c\tau+d}\right) = \zeta_{\gamma}(c\tau+d)^{1/2}\exp(\frac{\pi i cz^2}{c\tau+d})\theta(z,\tau) | ||
− | + | </math> | |
− | where | + | where <math>\zeta_\gamma</math> is an 8-th root of unity depending in <math>\gamma</math> |
===Riemann theta function=== | ===Riemann theta function=== | ||
− | * Siegel modular group | + | * Siegel modular group <math>\Gamma_g:=\operatorname{Sp}_{2g}(\R)\cap \operatorname{GL}_{2g}(\mathbb{Z})</math> |
− | * Siegel upper-half space | + | * Siegel upper-half space <math>\mathbb{H}_g=\left\{\Omega \in \operatorname{Mat}_{g \times g}(\mathbb{C}) \ \big| \ \Omega^t=\Omega, \Im \Omega>0 \right\}</math> |
− | * | + | * <math>\Gamma_g</math> acts on <math>\mathbb{H}_g</math> by |
− | + | :<math> | |
\Omega\mapsto \gamma(\Omega)=(A\Omega +B)(C\Omega + D)^{-1} | \Omega\mapsto \gamma(\Omega)=(A\Omega +B)(C\Omega + D)^{-1} | ||
− | + | </math> | |
− | * Igusa subgroup | + | * Igusa subgroup <math>\Gamma_{1,2}</math>, <math>\gamma=\begin{pmatrix}A & B \\ C & D \\ \end{pmatrix}\in \Gamma_{1,2}</math> iff diagonals of <math>^tAC, ^tBD</math> are even |
− | * | + | * <math>\Theta:\mathbb{C}^g\times \mathbb{H}_g\to \mathbb{C}</math> |
− | + | :<math> | |
\Theta(\mathbf{z},\Omega):=\sum_{{\mathbf{n}\in{\mathbb Z}^g}}e^{{\pi i ^t\mathbf{n}\cdot\boldsymbol{\Omega}\cdot\mathbf{n}}}e^{{2\pi i\mathbf{n}\cdot\mathbf{z}}} | \Theta(\mathbf{z},\Omega):=\sum_{{\mathbf{n}\in{\mathbb Z}^g}}e^{{\pi i ^t\mathbf{n}\cdot\boldsymbol{\Omega}\cdot\mathbf{n}}}e^{{2\pi i\mathbf{n}\cdot\mathbf{z}}} | ||
,\, \Omega\in \mathbb{H}_g,\mathbb{z}\in \mathbb{C}^g | ,\, \Omega\in \mathbb{H}_g,\mathbb{z}\in \mathbb{C}^g | ||
− | + | </math> | |
− | + | * quasi-periodicity | |
− | Let | + | Let <math>\mathbf{a},\mathbf{b}\in \mathbb{Z}^g,\mathbf{z}\in \mathbb{C}^g,\Omega\in \mathbb{H}_g</math>. We have |
− | + | :<math> | |
\Theta (\mathbf{z}+\Omega \mathbf{a}+\mathbf{b},\Omega)=\exp(-\pi i\cdot ^t\mathbf{a} \Omega \mathbf{a}-2\pi i ^t\mathbf{a}\mathbf{z})\Theta(\mathbf{z},\Omega) | \Theta (\mathbf{z}+\Omega \mathbf{a}+\mathbf{b},\Omega)=\exp(-\pi i\cdot ^t\mathbf{a} \Omega \mathbf{a}-2\pi i ^t\mathbf{a}\mathbf{z})\Theta(\mathbf{z},\Omega) | ||
− | + | </math> | |
− | + | * modularity | |
− | Let | + | Let <math>\gamma=\begin{pmatrix}A & B \\ C & D \\ \end{pmatrix}\in \Gamma_{1,2}</math>. We have |
− | + | :<math> | |
\Theta \left(^t(C\Omega + D)^{-1} \mathbf{z}, (A\Omega+B)(C\Omega + D)^{-1}\right)=\zeta_{\gamma}\det(C\Omega+D)^{1/2}\exp(\pi i\cdot ^t\mathbf{z}(C\Omega+D)^{-1}C\mathbf{z})\Theta(\mathbf{z},\Omega),\,\mathbf{z}\in \mathbb{C}^g,\Omega\in \mathbb{H}_g | \Theta \left(^t(C\Omega + D)^{-1} \mathbf{z}, (A\Omega+B)(C\Omega + D)^{-1}\right)=\zeta_{\gamma}\det(C\Omega+D)^{1/2}\exp(\pi i\cdot ^t\mathbf{z}(C\Omega+D)^{-1}C\mathbf{z})\Theta(\mathbf{z},\Omega),\,\mathbf{z}\in \mathbb{C}^g,\Omega\in \mathbb{H}_g | ||
− | + | </math> | |
− | where | + | where <math>\zeta_\gamma</math> is an 8-th root of unity depending in <math>\gamma</math> |
==Heisenberg group== | ==Heisenberg group== | ||
− | * [[Heisenberg group and Heisenberg algebra|Heisenberg group]] | + | * [[Heisenberg group and Heisenberg algebra|Heisenberg group]] <math>H(2g, \mathbb{R})</math> : central extension of <math>V</math> by <math>S^1=\{z\in \mathbb{C}:|z|=1\}</math> |
− | * note that | + | * note that <math>\psi(x,y)=\exp(\pi i A(x,y)),\,x,y\in V</math> is a 2-cocycle |
− | * Heisenberg group | + | * Heisenberg group <math>H(2g, \mathbb{R}):=\{(\lambda,x)|\lambda\in S^1,x\in V\}</math> with |
− | + | :<math> | |
(\lambda,x)\cdot (\mu, y):=(\lambda \mu \psi(x,y),x+y) | (\lambda,x)\cdot (\mu, y):=(\lambda \mu \psi(x,y),x+y) | ||
− | + | </math> | |
: <math> 1 \rightarrow S^1~\rightarrow~H(2g, \mathbb{R})~\rightarrow~V \rightarrow 0</math> | : <math> 1 \rightarrow S^1~\rightarrow~H(2g, \mathbb{R})~\rightarrow~V \rightarrow 0</math> | ||
+ | * central extension of <math>V</math> by <math>S^1</math> | ||
;thm (Stone-von Neumann) | ;thm (Stone-von Neumann) | ||
There exists a unique irreducible unitary representation | There exists a unique irreducible unitary representation | ||
− | + | :<math> | |
U:H(2g,\mathbb{R})\to Aut(\mathcal{H}) | U:H(2g,\mathbb{R})\to Aut(\mathcal{H}) | ||
− | + | </math> | |
− | such that | + | such that <math>U_{\lambda}=\lambda \operatorname{id}_{\mathcal{H}}</math> for all <math>\lambda \in S^1</math>. In other words, if there are two such representations <math>U^{(1)}</math> and <math>U^{(2)}</math> on <math>\mathcal{H}_1</math> and <math>\mathcal{H}_2</math>, then there exists an isomorphism <math>A: \mathcal{H}_1 \to \mathcal{H}_2</math> such that |
− | + | :<math> | |
A\circ U^{(1)}\circ A^{-1}=U^{(2)} \\ | A\circ U^{(1)}\circ A^{-1}=U^{(2)} \\ | ||
\begin{array}{ccc} \mathcal{H}_1 & \overset{A}{\longrightarrow } & \mathcal{H}_2 \\ \downarrow U^{(1)} & \text{} & \downarrow U^{(2)} \\ \mathcal{H}_1 & \overset{A}{\longrightarrow } & \mathcal{H}_2 \end{array} | \begin{array}{ccc} \mathcal{H}_1 & \overset{A}{\longrightarrow } & \mathcal{H}_2 \\ \downarrow U^{(1)} & \text{} & \downarrow U^{(2)} \\ \mathcal{H}_1 & \overset{A}{\longrightarrow } & \mathcal{H}_2 \end{array} | ||
− | + | </math> | |
+ | * <math>A</math> is an intertwinter between <math>U^{(1)}</math> and <math>U^{(2)}</math> | ||
* related to the equivalence of matrix mechanics and wave mechanics in the early days of quantum mechanics | * related to the equivalence of matrix mechanics and wave mechanics in the early days of quantum mechanics | ||
===realization=== | ===realization=== | ||
− | * let | + | * let <math>\mathcal{H}_1:=L^2(\mathbb{R}^g)</math> |
− | * for | + | * for <math>(\lambda,y_1,y_2)\in H(2g, \mathbb{R})</math>, <math>x_1\in \mathbb{R}^g</math> and <math>\varphi\in \mathcal{H}</math>, define |
− | + | :<math> | |
U_{(\lambda,y_1,y_2)}\varphi(x_1):=\lambda \exp(2\pi i (^tx_1y_2+^ty_1y_2/2))\varphi(x_1+y_1) | U_{(\lambda,y_1,y_2)}\varphi(x_1):=\lambda \exp(2\pi i (^tx_1y_2+^ty_1y_2/2))\varphi(x_1+y_1) | ||
− | + | </math> | |
− | * called the Schrodinger representation of | + | * called the Schrodinger representation of <math>H(2g, \mathbb{R})</math> |
===Heisenberg algebra=== | ===Heisenberg algebra=== | ||
− | * the Lie algebra | + | * the Lie algebra <math>\mathfrak{h}(2g,\mathbb{R})</math> of <math>H(2g,\mathbb{R})</math> has a basis : <math>A_1,\cdots,A_g, B_1,\cdots,B_g,C</math> with |
− | + | :<math> | |
[A_i, B_j] = \delta_{ij}C, [A_i, C] =[B_j, C] = 0 | [A_i, B_j] = \delta_{ij}C, [A_i, C] =[B_j, C] = 0 | ||
− | + | </math> | |
− | * want to get a reprsentation | + | * want to get a reprsentation <math>\delta U</math> of <math>\mathfrak{h}(2g,\mathbb{R})</math> on a certain dense subspace <math>\mathcal{H}_{\infty}</math> of <math>\mathcal{H}_1</math> |
− | * for | + | * for <math>X\in \mathfrak{h}(2g,\mathbb{R})</math>, let |
− | + | :<math> | |
\delta U_{X}f:=\lim_{t\to 0}\frac{(U_{\exp_H(tX)}f)-f}{t} | \delta U_{X}f:=\lim_{t\to 0}\frac{(U_{\exp_H(tX)}f)-f}{t} | ||
− | + | </math> | |
− | * | + | * on <math>\mathcal{H}_1</math> |
− | * | + | * <math>A_i</math> acts as <math>\frac{\partial f}{\partial x_i}</math> |
− | * | + | * <math>B_i</math> acts as <math>2\pi i x_i f(x)</math> |
+ | * <math>C</math> acts as <math>2\pi i f(x)</math> | ||
===theta as matrix coefficients=== | ===theta as matrix coefficients=== | ||
− | * | + | * <math>\mathcal{H}_{\infty}</math>, Schwartz space |
− | * | + | * <math>\mathcal{H}_{-\infty}</math>, the space of conjugate linear continuous maps from <math>\mathcal{H}_{\infty}</math> to <math>\mathbb{C}</math> |
− | * let | + | * let <math>W_{\Omega}:=\langle \delta U_{A_i}-\sum_{j}\Omega_{ij} \delta U_{B_j},\, i=1,\cdots, g\rangle</math>, subalgebra of <math>\mathfrak{h}(2g,\mathbb{R})\otimes \mathbb{C}</math> |
;prop | ;prop | ||
− | There is a unique | + | There is a unique <math>f_{\Omega}\in \mathcal{H}_{\infty}</math>, unique up to scalars, such that <math>\delta U_{X} f_{\Omega}=0, \forall X\in W_{\Omega}</math> |
− | * Let | + | * Let <math>\sigma:\mathbb{Z}^{2g}\to H(2g, \mathbb{R})</math> defined by |
− | + | :<math> | |
− | \sigma(n):=((-1)^{^tn_1n_2},n),\, n\in | + | \sigma(n):=((-1)^{^tn_1n_2},n),\, n\in \mathbb{Z}^{2g} |
− | + | </math> | |
;prop | ;prop | ||
− | There is a unique | + | There is a unique <math>\mu_{\mathbb{Z}}\in \mathcal{H}_{-\infty}</math>, unique up to scalars, which is invariant under <math>U_x,\, x\in \sigma(L)</math> |
− | * we get a function on | + | * we get a function on <math>H(2g,\mathbb{R})</math> as a matrix coefficient |
− | + | :<math> | |
h\to \langle U_hf_{\Omega},\mu_{\mathbb{Z}} \rangle :=\overline{\mu_{\mathbb{Z}}(U_hf_{\Omega})},\,h\in H(2g,\mathbb{R}) | h\to \langle U_hf_{\Omega},\mu_{\mathbb{Z}} \rangle :=\overline{\mu_{\mathbb{Z}}(U_hf_{\Omega})},\,h\in H(2g,\mathbb{R}) | ||
− | + | </math> | |
;thm | ;thm | ||
− | Let | + | Let <math>\Omega\in \mathbb{H}_g</math> be fixed. Let <math>\mathcal{H}</math> be a representation of <math>H(2g,\mathbb{R})</math> and <math>f_{\Omega},\mu_{\mathbb{Z}}</math> as above. For <math>x\in V=\mathbb{R}^{2g}</math>, |
− | + | :<math> | |
\langle U_{(1,x)}f_{\Omega}, \mu_{\mathbb{Z}}\rangle=c\exp(\pi i ^tx_1 \underline{\mathbf{x}})\Theta(\underline{\mathbf{x}},\Omega) | \langle U_{(1,x)}f_{\Omega}, \mu_{\mathbb{Z}}\rangle=c\exp(\pi i ^tx_1 \underline{\mathbf{x}})\Theta(\underline{\mathbf{x}},\Omega) | ||
− | + | </math> | |
− | for some | + | for some <math>c\in \mathbb{C}^{\times}</math> |
===quasi-periodicity=== | ===quasi-periodicity=== | ||
− | * for | + | * for <math>n=(n_1,n_2)\in \mathbb{Z}^{g}\times \mathbb{Z}^{g}\mathbb{Z}^{2g}</math>, |
− | + | :<math> | |
\begin{aligned} | \begin{aligned} | ||
\exp(\pi i ^tx_1 \underline{\mathbf{x}})\Theta(\underline{\mathbf{x}},\Omega)&=\langle U_{(1,x)}f_{\Omega}, \mu_{\mathbb{Z}}\rangle \\ | \exp(\pi i ^tx_1 \underline{\mathbf{x}})\Theta(\underline{\mathbf{x}},\Omega)&=\langle U_{(1,x)}f_{\Omega}, \mu_{\mathbb{Z}}\rangle \\ | ||
150번째 줄: | 153번째 줄: | ||
&=(-1)^{^tn_1n_2}\psi(n,x)\exp(\pi i ^t(x_1+n_1)(\underline{\mathbf{x+n}}))\Theta(\underline{\mathbf{x+n}},\Omega) | &=(-1)^{^tn_1n_2}\psi(n,x)\exp(\pi i ^t(x_1+n_1)(\underline{\mathbf{x+n}}))\Theta(\underline{\mathbf{x+n}},\Omega) | ||
\end{aligned} | \end{aligned} | ||
− | + | </math> | |
==metaplectic group== | ==metaplectic group== | ||
===covering of the symplectic group=== | ===covering of the symplectic group=== | ||
− | * let | + | * let <math>\gamma\in Sp_{2g}(\mathbb{R})</math>. As it preserves <math>A</math>, it induces an automorphism of <math>H(2g,\mathbb{R})</math> by |
− | + | :<math> | |
(\lambda,x)\mapsto (\lambda, \gamma x) | (\lambda,x)\mapsto (\lambda, \gamma x) | ||
− | + | </math> | |
− | * define a new representation | + | * define a new representation <math>U'</math> of <math>H(2g,\mathbb{R})</math> on <math>\mathcal{H}</math> by |
− | + | :<math> | |
U'_{(\lambda,x)}f:=U_{(\lambda,\gamma x)}f | U'_{(\lambda,x)}f:=U_{(\lambda,\gamma x)}f | ||
− | + | </math> | |
− | * by the Stone-von Neumann theorem, there exists a unitary map | + | * by the Stone-von Neumann theorem, there exists a unitary map <math>A_{\gamma}:\mathcal{H}\to \mathcal{H}</math> intertwining <math>U</math> and <math>U'</math> |
− | * let | + | * let <math>U(\mathcal{H})</math> be the group of unitary isomorphisms of <math>\mathcal{H}</math> and define |
− | + | :<math> | |
\widetilde{Mp}(2g,\mathbb{R}):=\{A\in U(\mathcal{H}) : A=A_{\gamma} \text{for some } \gamma \in Sp_{2g}(\mathbb{R})\} | \widetilde{Mp}(2g,\mathbb{R}):=\{A\in U(\mathcal{H}) : A=A_{\gamma} \text{for some } \gamma \in Sp_{2g}(\mathbb{R})\} | ||
− | + | </math> | |
− | * then for | + | * then for <math>A\in \widetilde{Mp}(2g,\mathbb{R})</math>, there exists <math>\gamma \in Sp_{2g}(\mathbb{R})</math> such that |
− | + | :<math> | |
AU_{(\lambda,x)}A^{-1}=U_{(\lambda,\gamma x)} \label{star} | AU_{(\lambda,x)}A^{-1}=U_{(\lambda,\gamma x)} \label{star} | ||
− | + | </math> | |
;lemma | ;lemma | ||
− | Given | + | Given <math>A\in \widetilde{Mp}(2g,\mathbb{R})</math>, there exists unique <math>\gamma \in Sp_{2g}(\mathbb{R})</math> such that <math>A=A_{\gamma}</math>. |
* we get an exact sequence | * we get an exact sequence | ||
: <math> 1 \rightarrow S^1~\rightarrow~\widetilde{Mp}(2g,\mathbb{R})~\overset{\rho}{\rightarrow}~Sp(2g,\mathbb{R}) \rightarrow 1</math> | : <math> 1 \rightarrow S^1~\rightarrow~\widetilde{Mp}(2g,\mathbb{R})~\overset{\rho}{\rightarrow}~Sp(2g,\mathbb{R}) \rightarrow 1</math> | ||
− | * Let | + | * Let <math>\gamma\in Sp(2g,\mathbb{R})</math> and <math>P\in \widetilde{Mp}(2g,\mathbb{R})</math> such that <math>\rho(P)=\gamma</math>. Then |
− | + | :<math> | |
\begin{aligned} | \begin{aligned} | ||
\exp(\pi i ^tx_1 \underline{\mathbf{x}})\Theta(\underline{\mathbf{x}},\Omega)&=\langle PU_{(1,x)}f_{\Omega}, P\mu_{\mathbb{Z}}\rangle\\ | \exp(\pi i ^tx_1 \underline{\mathbf{x}})\Theta(\underline{\mathbf{x}},\Omega)&=\langle PU_{(1,x)}f_{\Omega}, P\mu_{\mathbb{Z}}\rangle\\ | ||
&=\langle U_{(1,\gamma x)}P f_{\Omega}, P\mu_{\mathbb{Z}}\rangle | &=\langle U_{(1,\gamma x)}P f_{\Omega}, P\mu_{\mathbb{Z}}\rangle | ||
\end{aligned} | \end{aligned} | ||
− | + | </math> | |
where the second equality follows from \ref{star} | where the second equality follows from \ref{star} | ||
− | * once we compute | + | * once we compute <math>P f_{\Omega}, P\mu_{\mathbb{Z}}</math>, the functional equation of <math>\Theta</math> will fall out |
− | ===computing | + | ===computing <math>P f_{\Omega}</math>=== |
;thm | ;thm | ||
− | Let | + | Let <math>P\in \widetilde{Mp}(2g,\mathbb{R})</math>, <math>\rho(P)=\gamma</math>. We choose <math>f_{\Omega}(x)=\exp(\pi i ^tx \Omega x)</math> for <math>\Omega\in \mathbb{H}_{g}</math>. Then |
− | + | :<math> | |
Pf_{\Omega}=C(P,\Omega)f_{\gamma*\Omega}, | Pf_{\Omega}=C(P,\Omega)f_{\gamma*\Omega}, | ||
− | + | </math> | |
− | where | + | where <math>C(P,\Omega)</math> is, up to a scalar of absoulte value one, a branch of <math>\det(-B\Omega+A)^{-1/2}</math> on <math>\mathbb{H}_{g}</math> |
− | * | + | * <math>\chi: \widetilde{Mp}(2g,\mathbb{R})\to S^1</math>, <math>\chi(P):=\det(-B\Omega+A)C(P,\Omega)^2</math> is a character |
− | * | + | * <math>\operatorname{ker}(\chi)=Mp(2g,\mathbb{R})</math> central ext of <math>Sp_{2g}(\mathbb{R})</math> by <math>\{\pm 1\}</math> |
− | ===computing | + | ===computing <math>P\mu_{\mathbb{Z}}</math>=== |
− | * Recall that | + | * Recall that <math>\mu_{\mathbb{Z}}\in \mathcal{H}_{-\infty}</math> is killed by <math>U_x-1</math> for any <math>x\in \sigma(\mathbb{Z}^{2g})</math>. |
− | * for | + | * for <math>\tilde{\gamma}\in Mp(2g,\mathbb{R})</math> with <math>\rho(\tilde{\gamma})=\gamma\in \Gamma_{1,2}</math>, <math>\tilde{\gamma}\mu_{\mathbb{Z}}</math> is killed by <math>U_{T_{\gamma}x}-1</math> for <math>x\in \sigma(\mathbb{Z}^{2g})</math>. |
− | * from the uniqueness of | + | * from the uniqueness of <math>\mu_{\mathbb{Z}}</math>, we get |
− | + | :<math> | |
\tilde{\gamma}\mu_{\mathbb{Z}}=\eta(\tilde{\gamma})\mu_{\mathbb{Z}} | \tilde{\gamma}\mu_{\mathbb{Z}}=\eta(\tilde{\gamma})\mu_{\mathbb{Z}} | ||
− | + | </math> | |
− | where | + | where <math>\eta(\tilde{\gamma})\in \mathbb{C}^{\times}</math>. |
− | * | + | * <math>\eta:\rho^{-1}(\Gamma_{1,2})\cap Mp(2g,\mathbb{R})\to \mathbb{C}^{\times}</math> is a character |
;lemma | ;lemma | ||
− | # | + | # <math>\eta</math> surjects on the 8-th root of unity |
− | # Consider | + | # Consider <math>\eta^2</math> as a character on <math>\Gamma_{1,2}</math>. If <math>\operatorname{ker} \eta^2=\Delta</math>, then <math>\Delta</math> contains <math>\Gamma_4=\{\gamma\in Sp_{2g}(\mathbb{Z}):\gamma=I_g \mod 4\}</math> |
===functional equation=== | ===functional equation=== | ||
− | * for | + | * for <math>x \in \mathbb{R}^{2g}</math> and <math>\Omega\in \mathbb{H}_g</math>, let |
− | + | :<math> | |
\Theta[x](\Omega):=\exp(\pi i ^tx_1 \underline{\mathbf{x}})\Theta(\underline{\mathbf{x}},\Omega) | \Theta[x](\Omega):=\exp(\pi i ^tx_1 \underline{\mathbf{x}})\Theta(\underline{\mathbf{x}},\Omega) | ||
− | + | </math> | |
;thm | ;thm | ||
− | For | + | For <math>\mathbb{x}\in \mathbb{R}^{2g}, \Omega\in \mathbb{H}_g</math> and <math>\tilde{\gamma}\in Mp(2g,\mathbb{R})</math> with <math>\rho(\tilde{\gamma})=\gamma=\begin{pmatrix}A & B \\ C & D \\ \end{pmatrix}\in \Gamma_{1,2}</math>, we have |
− | + | :<math> | |
\Theta[x](\Omega)=\overline{\eta(\tilde{\gamma})} \det(-B\Omega+A)^{1/2}\Theta[\gamma x]\left((D\Omega-C)(-B\Omega+A)^{-1}\right) | \Theta[x](\Omega)=\overline{\eta(\tilde{\gamma})} \det(-B\Omega+A)^{1/2}\Theta[\gamma x]\left((D\Omega-C)(-B\Omega+A)^{-1}\right) | ||
− | + | </math> | |
==memo== | ==memo== | ||
− | * | + | * <math>\gamma=\begin{pmatrix}A & B \\ C & D \\\end{pmatrix}\in \Gamma_g</math> |
− | + | :<math> | |
\begin{align} | \begin{align} | ||
^tAC=^tCA \\ | ^tAC=^tCA \\ | ||
227번째 줄: | 230번째 줄: | ||
^tAD-^tCB= I_g | ^tAD-^tCB= I_g | ||
\end{align} | \end{align} | ||
− | + | </math> | |
− | * Igusa subgroup | + | * Igusa subgroup <math>\Gamma_{1,2}:=\{\gamma\in \Gamma_g|Q(\gamma \mathbf{x})=Q(\mathbf{x}) \pmod 2\}</math>, where <math>\mathbf{x}=(\mathbf{x_1},\mathbf{x_2})\in \mathbb{Z}^g\times \mathbb{Z}^g=\mathbb{Z}^{2g}</math>, <math>Q(\mathbf{x})=^t\mathbf{x_1} \mathbf{x_2}</math> |
− | * for | + | * for <math>\Omega\in \mathbb{H}_g</math>, define a lattice <math>\Lambda_{\Omega}=\mathbb{Z}^g+\Omega \mathbb{Z}^g\subset \mathbb{C}^g</math> |
− | * a smooth vector | + | * a smooth vector <math>f_{\Omega}\in \mathcal{H}_{\infty}</math>, (Schwartz space, rapidly decreasing smooth function) |
− | * a functional | + | * a functional <math>\mu_{\mathbb{Z}}\in \mathcal{H}_{-\infty}</math>, where <math>\mathcal{H}_{-\infty}</math> is the space '''conjugate''' linear continuous maps from <math>\mathcal{H}_{\infty}</math> to <math>\mathbb{C}</math> |
− | * let | + | * let <math>\mathbf{x}=(x_1,x_2)</math> and <math>\underline{\mathbf{x}}=\Omega x_1+x_2</math> |
− | * | + | * <math>\Theta(\underline{\mathbf{x}},\Omega)</math> appears as pairing |
− | + | :<math> | |
\langle U_{(1,x)}f_{\Omega}, \mu_{\mathbb{Z}}\rangle=c\exp(\pi i ^tx_1 \underline{\mathbf{x}})\Theta(\underline{\mathbf{x}},\Omega) | \langle U_{(1,x)}f_{\Omega}, \mu_{\mathbb{Z}}\rangle=c\exp(\pi i ^tx_1 \underline{\mathbf{x}})\Theta(\underline{\mathbf{x}},\Omega) | ||
− | + | </math> | |
− | * | + | * <math>A_i=p_i,B_i=x_i</math> in usual notation for Heisenberg algebra |
− | * | + | * <math>[X,P] = X P - P X = i \hbar</math> |
==related items== | ==related items== | ||
251번째 줄: | 254번째 줄: | ||
[[분류:Lie theory]] | [[분류:Lie theory]] | ||
[[분류:Talks and lecture notes]] | [[분류:Talks and lecture notes]] | ||
+ | [[분류:migrate]] |
2020년 11월 16일 (월) 04:31 기준 최신판
abstract
- title: Jacobi's theta function from a representation theoretic viewpoint
- Jacobi introduced his theta functions to develop the theory of elliptic functions. Weil's approach to theta functions opened up the way to study them from a representation theoretic point of view. This involves the Heisenberg group, the Stone-von Neumann theorem and the Weil representation of the metaplectic group. I will give an introduction to this topic focusing on the classical transformation properties of theta functions.
- Mumford, David, M. Nori, and P. Norman. Tata Lectures on Theta III. Boston: Birkhäuser, 2006.
questions
- semi-direct product and 2-cocycle
- Hilbert space
- unitary operator
- statement of the Stone-von Neumann theorem
- \(C\Omega + D\) is invertible and \(\Im{\gamma(\Omega)}>0 \)
- why consider conjugate linear functionals?
- a given sesquilinear form \(\langle \cdot, \cdot \rangle\) determines an isomorphism of \(V\) with the complex conjugate of the dual space
- equivariant action on \(\mathcal{H}_{\infty}\) and \(\mathcal{H}_{-\infty}\)
overview
- \(g\in \mathbb{Z}\), \(g\geq 1\)
- \(V=(\mathbb{R}^{2g},A)\), where \(A\) is the symplectic form \(A(x,y)=^tx_1y_2-^tx_2y_1\), \(2g\)-dimensional symplectic space
- symplectic group, isometry of \(V\), \(\gamma\) s.t. \(A(\gamma x,\gamma y)=A(x,y)\)
- \(Sp_{2g}(\mathbb{R})=\{M\in \operatorname{GL}_{2g}(\mathbb{R})|M^T J_{n} M = J_{n}\}\) where
\[ J_{n} =\begin{pmatrix}0 & I_n \\-I_n & 0 \\\end{pmatrix} \]
- representation of Heisenberg group \(H(2g, \mathbb{R})\) on a Hilbert space \(\mathcal{H}\)
- Stone-von Neumann theorem -> projective representation of \(Sp_{2g}(\mathbb{R})\) on \(\mathcal{H}\)
- Weil representation of \(Mp(2g,\mathbb{R})\), double cover of the symplectic group
- interpret \(\Theta\) as representation theoretic quantity
- transformation properties of theta function follows from the action of \(Mp(2g,\mathbb{R})\) and \(H(2g,\mathbb{R})\) on \(\mathcal{H}\)
theta functions
Jacobi theta function
- \(\theta:\mathbb{C}\times \mathbb{H}\to \mathbb{C}\)
\[ \theta (z,\tau)= \sum_{n \in \mathbb{Z}} e^{\pi i n^2 \tau} \, \E^{2 \pi i n z},\, \tau\in \mathbb{H},z\in \mathbb{C} \]
- for \(a,b\in \mathbb{Z}\),
\[\theta (z+a\tau +b,\tau)=\exp(-\pi i a^2 \tau -2\pi i az)\theta(z,\tau)\]
- for \(\gamma=\left( \begin{array}{cc} a & b \\ c & d \\ \end{array} \right)\in SL_2(\mathbb{Z})\) and \(ac,bd\) even, we have
\[ \theta\left(\frac{z}{c\tau+d},\frac{a\tau+b}{c\tau+d}\right) = \zeta_{\gamma}(c\tau+d)^{1/2}\exp(\frac{\pi i cz^2}{c\tau+d})\theta(z,\tau) \] where \(\zeta_\gamma\) is an 8-th root of unity depending in \(\gamma\)
Riemann theta function
- Siegel modular group \(\Gamma_g:=\operatorname{Sp}_{2g}(\R)\cap \operatorname{GL}_{2g}(\mathbb{Z})\)
- Siegel upper-half space \(\mathbb{H}_g=\left\{\Omega \in \operatorname{Mat}_{g \times g}(\mathbb{C}) \ \big| \ \Omega^t=\Omega, \Im \Omega>0 \right\}\)
- \(\Gamma_g\) acts on \(\mathbb{H}_g\) by
\[ \Omega\mapsto \gamma(\Omega)=(A\Omega +B)(C\Omega + D)^{-1} \]
- Igusa subgroup \(\Gamma_{1,2}\), \(\gamma=\begin{pmatrix}A & B \\ C & D \\ \end{pmatrix}\in \Gamma_{1,2}\) iff diagonals of \(^tAC, ^tBD\) are even
- \(\Theta:\mathbb{C}^g\times \mathbb{H}_g\to \mathbb{C}\)
\[ \Theta(\mathbf{z},\Omega):=\sum_{{\mathbf{n}\in{\mathbb Z}^g}}e^{{\pi i ^t\mathbf{n}\cdot\boldsymbol{\Omega}\cdot\mathbf{n}}}e^{{2\pi i\mathbf{n}\cdot\mathbf{z}}} ,\, \Omega\in \mathbb{H}_g,\mathbb{z}\in \mathbb{C}^g \]
- quasi-periodicity
Let \(\mathbf{a},\mathbf{b}\in \mathbb{Z}^g,\mathbf{z}\in \mathbb{C}^g,\Omega\in \mathbb{H}_g\). We have \[ \Theta (\mathbf{z}+\Omega \mathbf{a}+\mathbf{b},\Omega)=\exp(-\pi i\cdot ^t\mathbf{a} \Omega \mathbf{a}-2\pi i ^t\mathbf{a}\mathbf{z})\Theta(\mathbf{z},\Omega) \]
- modularity
Let \(\gamma=\begin{pmatrix}A & B \\ C & D \\ \end{pmatrix}\in \Gamma_{1,2}\). We have \[ \Theta \left(^t(C\Omega + D)^{-1} \mathbf{z}, (A\Omega+B)(C\Omega + D)^{-1}\right)=\zeta_{\gamma}\det(C\Omega+D)^{1/2}\exp(\pi i\cdot ^t\mathbf{z}(C\Omega+D)^{-1}C\mathbf{z})\Theta(\mathbf{z},\Omega),\,\mathbf{z}\in \mathbb{C}^g,\Omega\in \mathbb{H}_g \] where \(\zeta_\gamma\) is an 8-th root of unity depending in \(\gamma\)
Heisenberg group
- Heisenberg group \(H(2g, \mathbb{R})\) : central extension of \(V\) by \(S^1=\{z\in \mathbb{C}:|z|=1\}\)
- note that \(\psi(x,y)=\exp(\pi i A(x,y)),\,x,y\in V\) is a 2-cocycle
- Heisenberg group \(H(2g, \mathbb{R}):=\{(\lambda,x)|\lambda\in S^1,x\in V\}\) with
\[ (\lambda,x)\cdot (\mu, y):=(\lambda \mu \psi(x,y),x+y) \] \[ 1 \rightarrow S^1~\rightarrow~H(2g, \mathbb{R})~\rightarrow~V \rightarrow 0\]
- central extension of \(V\) by \(S^1\)
- thm (Stone-von Neumann)
There exists a unique irreducible unitary representation \[ U:H(2g,\mathbb{R})\to Aut(\mathcal{H}) \] such that \(U_{\lambda}=\lambda \operatorname{id}_{\mathcal{H}}\) for all \(\lambda \in S^1\). In other words, if there are two such representations \(U^{(1)}\) and \(U^{(2)}\) on \(\mathcal{H}_1\) and \(\mathcal{H}_2\), then there exists an isomorphism \(A: \mathcal{H}_1 \to \mathcal{H}_2\) such that \[ A\circ U^{(1)}\circ A^{-1}=U^{(2)} \\ \begin{array}{ccc} \mathcal{H}_1 & \overset{A}{\longrightarrow } & \mathcal{H}_2 \\ \downarrow U^{(1)} & \text{} & \downarrow U^{(2)} \\ \mathcal{H}_1 & \overset{A}{\longrightarrow } & \mathcal{H}_2 \end{array} \]
- \(A\) is an intertwinter between \(U^{(1)}\) and \(U^{(2)}\)
- related to the equivalence of matrix mechanics and wave mechanics in the early days of quantum mechanics
realization
- let \(\mathcal{H}_1:=L^2(\mathbb{R}^g)\)
- for \((\lambda,y_1,y_2)\in H(2g, \mathbb{R})\), \(x_1\in \mathbb{R}^g\) and \(\varphi\in \mathcal{H}\), define
\[ U_{(\lambda,y_1,y_2)}\varphi(x_1):=\lambda \exp(2\pi i (^tx_1y_2+^ty_1y_2/2))\varphi(x_1+y_1) \]
- called the Schrodinger representation of \(H(2g, \mathbb{R})\)
Heisenberg algebra
- the Lie algebra \(\mathfrak{h}(2g,\mathbb{R})\) of \(H(2g,\mathbb{R})\) has a basis \[A_1,\cdots,A_g, B_1,\cdots,B_g,C\] with
\[ [A_i, B_j] = \delta_{ij}C, [A_i, C] =[B_j, C] = 0 \]
- want to get a reprsentation \(\delta U\) of \(\mathfrak{h}(2g,\mathbb{R})\) on a certain dense subspace \(\mathcal{H}_{\infty}\) of \(\mathcal{H}_1\)
- for \(X\in \mathfrak{h}(2g,\mathbb{R})\), let
\[ \delta U_{X}f:=\lim_{t\to 0}\frac{(U_{\exp_H(tX)}f)-f}{t} \]
- on \(\mathcal{H}_1\)
- \(A_i\) acts as \(\frac{\partial f}{\partial x_i}\)
- \(B_i\) acts as \(2\pi i x_i f(x)\)
- \(C\) acts as \(2\pi i f(x)\)
theta as matrix coefficients
- \(\mathcal{H}_{\infty}\), Schwartz space
- \(\mathcal{H}_{-\infty}\), the space of conjugate linear continuous maps from \(\mathcal{H}_{\infty}\) to \(\mathbb{C}\)
- let \(W_{\Omega}:=\langle \delta U_{A_i}-\sum_{j}\Omega_{ij} \delta U_{B_j},\, i=1,\cdots, g\rangle\), subalgebra of \(\mathfrak{h}(2g,\mathbb{R})\otimes \mathbb{C}\)
- prop
There is a unique \(f_{\Omega}\in \mathcal{H}_{\infty}\), unique up to scalars, such that \(\delta U_{X} f_{\Omega}=0, \forall X\in W_{\Omega}\)
- Let \(\sigma:\mathbb{Z}^{2g}\to H(2g, \mathbb{R})\) defined by
\[ \sigma(n):=((-1)^{^tn_1n_2},n),\, n\in \mathbb{Z}^{2g} \]
- prop
There is a unique \(\mu_{\mathbb{Z}}\in \mathcal{H}_{-\infty}\), unique up to scalars, which is invariant under \(U_x,\, x\in \sigma(L)\)
- we get a function on \(H(2g,\mathbb{R})\) as a matrix coefficient
\[ h\to \langle U_hf_{\Omega},\mu_{\mathbb{Z}} \rangle :=\overline{\mu_{\mathbb{Z}}(U_hf_{\Omega})},\,h\in H(2g,\mathbb{R}) \]
- thm
Let \(\Omega\in \mathbb{H}_g\) be fixed. Let \(\mathcal{H}\) be a representation of \(H(2g,\mathbb{R})\) and \(f_{\Omega},\mu_{\mathbb{Z}}\) as above. For \(x\in V=\mathbb{R}^{2g}\), \[ \langle U_{(1,x)}f_{\Omega}, \mu_{\mathbb{Z}}\rangle=c\exp(\pi i ^tx_1 \underline{\mathbf{x}})\Theta(\underline{\mathbf{x}},\Omega) \] for some \(c\in \mathbb{C}^{\times}\)
quasi-periodicity
- for \(n=(n_1,n_2)\in \mathbb{Z}^{g}\times \mathbb{Z}^{g}\mathbb{Z}^{2g}\),
\[ \begin{aligned} \exp(\pi i ^tx_1 \underline{\mathbf{x}})\Theta(\underline{\mathbf{x}},\Omega)&=\langle U_{(1,x)}f_{\Omega}, \mu_{\mathbb{Z}}\rangle \\ &=\langle U_{\sigma(n)}U_{(1,x)}f_{\Omega}, U_{\sigma(n)} \mu_{\mathbb{Z}}\rangle \\ &=\langle U_{(-1)^{^tn_1n_2}\psi(n,x),x+n}f_{\Omega},\mu_{\mathbb{Z}}\rangle \\ &=(-1)^{^tn_1n_2}\psi(n,x)\exp(\pi i ^t(x_1+n_1)(\underline{\mathbf{x+n}}))\Theta(\underline{\mathbf{x+n}},\Omega) \end{aligned} \]
metaplectic group
covering of the symplectic group
- let \(\gamma\in Sp_{2g}(\mathbb{R})\). As it preserves \(A\), it induces an automorphism of \(H(2g,\mathbb{R})\) by
\[ (\lambda,x)\mapsto (\lambda, \gamma x) \]
- define a new representation \(U'\) of \(H(2g,\mathbb{R})\) on \(\mathcal{H}\) by
\[ U'_{(\lambda,x)}f:=U_{(\lambda,\gamma x)}f \]
- by the Stone-von Neumann theorem, there exists a unitary map \(A_{\gamma}:\mathcal{H}\to \mathcal{H}\) intertwining \(U\) and \(U'\)
- let \(U(\mathcal{H})\) be the group of unitary isomorphisms of \(\mathcal{H}\) and define
\[ \widetilde{Mp}(2g,\mathbb{R}):=\{A\in U(\mathcal{H}) : A=A_{\gamma} \text{for some } \gamma \in Sp_{2g}(\mathbb{R})\} \]
- then for \(A\in \widetilde{Mp}(2g,\mathbb{R})\), there exists \(\gamma \in Sp_{2g}(\mathbb{R})\) such that
\[ AU_{(\lambda,x)}A^{-1}=U_{(\lambda,\gamma x)} \label{star} \]
- lemma
Given \(A\in \widetilde{Mp}(2g,\mathbb{R})\), there exists unique \(\gamma \in Sp_{2g}(\mathbb{R})\) such that \(A=A_{\gamma}\).
- we get an exact sequence
\[ 1 \rightarrow S^1~\rightarrow~\widetilde{Mp}(2g,\mathbb{R})~\overset{\rho}{\rightarrow}~Sp(2g,\mathbb{R}) \rightarrow 1\]
- Let \(\gamma\in Sp(2g,\mathbb{R})\) and \(P\in \widetilde{Mp}(2g,\mathbb{R})\) such that \(\rho(P)=\gamma\). Then
\[ \begin{aligned} \exp(\pi i ^tx_1 \underline{\mathbf{x}})\Theta(\underline{\mathbf{x}},\Omega)&=\langle PU_{(1,x)}f_{\Omega}, P\mu_{\mathbb{Z}}\rangle\\ &=\langle U_{(1,\gamma x)}P f_{\Omega}, P\mu_{\mathbb{Z}}\rangle \end{aligned} \] where the second equality follows from \ref{star}
- once we compute \(P f_{\Omega}, P\mu_{\mathbb{Z}}\), the functional equation of \(\Theta\) will fall out
computing \(P f_{\Omega}\)
- thm
Let \(P\in \widetilde{Mp}(2g,\mathbb{R})\), \(\rho(P)=\gamma\). We choose \(f_{\Omega}(x)=\exp(\pi i ^tx \Omega x)\) for \(\Omega\in \mathbb{H}_{g}\). Then \[ Pf_{\Omega}=C(P,\Omega)f_{\gamma*\Omega}, \] where \(C(P,\Omega)\) is, up to a scalar of absoulte value one, a branch of \(\det(-B\Omega+A)^{-1/2}\) on \(\mathbb{H}_{g}\)
- \(\chi: \widetilde{Mp}(2g,\mathbb{R})\to S^1\), \(\chi(P):=\det(-B\Omega+A)C(P,\Omega)^2\) is a character
- \(\operatorname{ker}(\chi)=Mp(2g,\mathbb{R})\) central ext of \(Sp_{2g}(\mathbb{R})\) by \(\{\pm 1\}\)
computing \(P\mu_{\mathbb{Z}}\)
- Recall that \(\mu_{\mathbb{Z}}\in \mathcal{H}_{-\infty}\) is killed by \(U_x-1\) for any \(x\in \sigma(\mathbb{Z}^{2g})\).
- for \(\tilde{\gamma}\in Mp(2g,\mathbb{R})\) with \(\rho(\tilde{\gamma})=\gamma\in \Gamma_{1,2}\), \(\tilde{\gamma}\mu_{\mathbb{Z}}\) is killed by \(U_{T_{\gamma}x}-1\) for \(x\in \sigma(\mathbb{Z}^{2g})\).
- from the uniqueness of \(\mu_{\mathbb{Z}}\), we get
\[ \tilde{\gamma}\mu_{\mathbb{Z}}=\eta(\tilde{\gamma})\mu_{\mathbb{Z}} \] where \(\eta(\tilde{\gamma})\in \mathbb{C}^{\times}\).
- \(\eta:\rho^{-1}(\Gamma_{1,2})\cap Mp(2g,\mathbb{R})\to \mathbb{C}^{\times}\) is a character
- lemma
- \(\eta\) surjects on the 8-th root of unity
- Consider \(\eta^2\) as a character on \(\Gamma_{1,2}\). If \(\operatorname{ker} \eta^2=\Delta\), then \(\Delta\) contains \(\Gamma_4=\{\gamma\in Sp_{2g}(\mathbb{Z}):\gamma=I_g \mod 4\}\)
functional equation
- for \(x \in \mathbb{R}^{2g}\) and \(\Omega\in \mathbb{H}_g\), let
\[ \Theta[x](\Omega):=\exp(\pi i ^tx_1 \underline{\mathbf{x}})\Theta(\underline{\mathbf{x}},\Omega) \]
- thm
For \(\mathbb{x}\in \mathbb{R}^{2g}, \Omega\in \mathbb{H}_g\) and \(\tilde{\gamma}\in Mp(2g,\mathbb{R})\) with \(\rho(\tilde{\gamma})=\gamma=\begin{pmatrix}A & B \\ C & D \\ \end{pmatrix}\in \Gamma_{1,2}\), we have \[ \Theta[x](\Omega)=\overline{\eta(\tilde{\gamma})} \det(-B\Omega+A)^{1/2}\Theta[\gamma x]\left((D\Omega-C)(-B\Omega+A)^{-1}\right) \]
memo
- \(\gamma=\begin{pmatrix}A & B \\ C & D \\\end{pmatrix}\in \Gamma_g\)
\[ \begin{align} ^tAC=^tCA \\ ^tBD=^tDB \\ ^tAD-^tCB= I_g \end{align} \]
- Igusa subgroup \(\Gamma_{1,2}:=\{\gamma\in \Gamma_g|Q(\gamma \mathbf{x})=Q(\mathbf{x}) \pmod 2\}\), where \(\mathbf{x}=(\mathbf{x_1},\mathbf{x_2})\in \mathbb{Z}^g\times \mathbb{Z}^g=\mathbb{Z}^{2g}\), \(Q(\mathbf{x})=^t\mathbf{x_1} \mathbf{x_2}\)
- for \(\Omega\in \mathbb{H}_g\), define a lattice \(\Lambda_{\Omega}=\mathbb{Z}^g+\Omega \mathbb{Z}^g\subset \mathbb{C}^g\)
- a smooth vector \(f_{\Omega}\in \mathcal{H}_{\infty}\), (Schwartz space, rapidly decreasing smooth function)
- a functional \(\mu_{\mathbb{Z}}\in \mathcal{H}_{-\infty}\), where \(\mathcal{H}_{-\infty}\) is the space conjugate linear continuous maps from \(\mathcal{H}_{\infty}\) to \(\mathbb{C}\)
- let \(\mathbf{x}=(x_1,x_2)\) and \(\underline{\mathbf{x}}=\Omega x_1+x_2\)
- \(\Theta(\underline{\mathbf{x}},\Omega)\) appears as pairing
\[ \langle U_{(1,x)}f_{\Omega}, \mu_{\mathbb{Z}}\rangle=c\exp(\pi i ^tx_1 \underline{\mathbf{x}})\Theta(\underline{\mathbf{x}},\Omega) \]
- \(A_i=p_i,B_i=x_i\) in usual notation for Heisenberg algebra
- \([X,P] = X P - P X = i \hbar\)