"Modified KdV (mKdV) equation"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
(section 'articles' updated)
 
(다른 사용자 한 명의 중간 판 하나는 보이지 않습니다)
3번째 줄: 3번째 줄:
 
:<math>u_t+6uu_x+u_{xxx}=0</math>
 
:<math>u_t+6uu_x+u_{xxx}=0</math>
 
* mKdV equation
 
* mKdV equation
$$
+
:<math>
 
u_t+6u^2u_x+u_{xxx}=0
 
u_t+6u^2u_x+u_{xxx}=0
$$
+
</math>
  
==$N$-solution solution==
+
==<math>N</math>-solution solution==
* $N$-solution solution
+
* <math>N</math>-solution solution
$$
+
:<math>
 
u(t,x)=-2\frac{\partial}{\partial x}\tan^{-1}[\frac{\Im \det (I+A)}{\Re \det (I+A)}]
 
u(t,x)=-2\frac{\partial}{\partial x}\tan^{-1}[\frac{\Im \det (I+A)}{\Re \det (I+A)}]
$$
+
</math>
where $I$ is the $N\times N$ matrix and $A$ denotes the $N\times N$ matrix with elements
+
where <math>I</math> is the <math>N\times N</math> matrix and <math>A</math> denotes the <math>N\times N</math> matrix with elements
$$
+
:<math>
 
A_{mn}=-\frac{d_n(t)}{\zeta_n+\zeta_m}\exp[i(\zeta_n+\zeta_m)x],\, m,n=1,2\cdots,N,
 
A_{mn}=-\frac{d_n(t)}{\zeta_n+\zeta_m}\exp[i(\zeta_n+\zeta_m)x],\, m,n=1,2\cdots,N,
$$
+
</math>
$\zeta_n=i\eta_n,\, \eta_n>0$
+
<math>\zeta_n=i\eta_n,\, \eta_n>0</math>
$d_n(t)=d_n(0)\exp (8i\zeta_n^3 t)$
+
<math>d_n(t)=d_n(0)\exp (8i\zeta_n^3 t)</math>
* 1-soliton, $\zeta=i\eta,\, \eta>0$
+
* 1-soliton, <math>\zeta=i\eta,\, \eta>0</math>
$$
+
:<math>
 
u(x)=-2\eta \operatorname{sech} (2\eta x)
 
u(x)=-2\eta \operatorname{sech} (2\eta x)
$$
+
</math>
 
* 2-soliton
 
* 2-soliton
 
* see
 
* see
42번째 줄: 42번째 줄:
 
* Miguel A. Alejo, Claudio Muñoz, José M. Palacios, On the variational structure of breather solutions, arXiv:1309.0625 [math-ph], September 03 2013, http://arxiv.org/abs/1309.0625
 
* Miguel A. Alejo, Claudio Muñoz, José M. Palacios, On the variational structure of breather solutions, arXiv:1309.0625 [math-ph], September 03 2013, http://arxiv.org/abs/1309.0625
 
* Germain, Pierre, Fabio Pusateri, and Frédéric Rousset. ‘Asymptotic Stability of Solitons for mKdV’. arXiv:1503.09143 [math], 31 March 2015. http://arxiv.org/abs/1503.09143.
 
* Germain, Pierre, Fabio Pusateri, and Frédéric Rousset. ‘Asymptotic Stability of Solitons for mKdV’. arXiv:1503.09143 [math], 31 March 2015. http://arxiv.org/abs/1503.09143.
 +
[[분류:migrate]]

2020년 11월 16일 (월) 04:31 기준 최신판

introduction

\[u_t+6uu_x+u_{xxx}=0\]

  • mKdV equation

\[ u_t+6u^2u_x+u_{xxx}=0 \]

\(N\)-solution solution

  • \(N\)-solution solution

\[ u(t,x)=-2\frac{\partial}{\partial x}\tan^{-1}[\frac{\Im \det (I+A)}{\Re \det (I+A)}] \] where \(I\) is the \(N\times N\) matrix and \(A\) denotes the \(N\times N\) matrix with elements \[ A_{mn}=-\frac{d_n(t)}{\zeta_n+\zeta_m}\exp[i(\zeta_n+\zeta_m)x],\, m,n=1,2\cdots,N, \] \(\zeta_n=i\eta_n,\, \eta_n>0\) \(d_n(t)=d_n(0)\exp (8i\zeta_n^3 t)\)

  • 1-soliton, \(\zeta=i\eta,\, \eta>0\)

\[ u(x)=-2\eta \operatorname{sech} (2\eta x) \]

  • 2-soliton
  • see
    • M. Wadati and K. Ohkuma, J. Phys. Soc. Japan. 51,2029 (1982).
    • M. Wadati, J. Phys. Soc. Japan.77, 074005 (2008)

periodic solution

  • M. Wadati, J. Phys. Soc. Japan.77, 074005 (2008)
  • M. Wadati, J. Phys. Soc.Japan.38, 673 (1975); ibid38,681 (1975).
  • P.G. Kevrekidis, A. Khare, A. Saxena and G. Herring, J.Phys. A37, 10959 (2004).
  • Z. Fu, S. Liu, S. Liu and Q. Zhao, Phys. Letts. A290,72 (2001).


expositions

  • Ho, C.-L., and P. Roy. ‘mKdV Equation Approach to Zero Energy States of Graphene’. arXiv:1507.02649 [cond-Mat, Physics:math-Ph, Physics:nlin, Physics:quant-Ph], 9 July 2015. http://arxiv.org/abs/1507.02649.


articles

  • Miguel A. Alejo, Claudio Muñoz, José M. Palacios, On the variational structure of breather solutions, arXiv:1309.0625 [math-ph], September 03 2013, http://arxiv.org/abs/1309.0625
  • Germain, Pierre, Fabio Pusateri, and Frédéric Rousset. ‘Asymptotic Stability of Solitons for mKdV’. arXiv:1503.09143 [math], 31 March 2015. http://arxiv.org/abs/1503.09143.