"Talk on String functions and quantum affine algebras"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
 
(다른 사용자 한 명의 중간 판 49개는 보이지 않습니다)
3번째 줄: 3번째 줄:
 
===key message===
 
===key message===
 
* string functions know about Kirillov-Reshetikhin modules
 
* string functions know about Kirillov-Reshetikhin modules
 +
* infinite vs. finite
 +
<math>
 +
\newcommand{\g}{\mathfrak{g}}
 +
\newcommand{\h}{\mathfrak{h}}
 +
\newcommand{\res}{\operatorname{res}}
 +
\newcommand{\uqg}{U_{q}(\g)}
 +
\newcommand{\ghat}{\widehat{\g}}
 +
\newcommand{\uqghat}{U_{q}(\ghat)}
 +
</math>
  
 
==review of affine Lie algebras and their integrable representations==
 
==review of affine Lie algebras and their integrable representations==
 
===affine Lie algebras===
 
===affine Lie algebras===
 
* [[Affine Kac-Moody algebra]]
 
* [[Affine Kac-Moody algebra]]
* Let $\overline{\mathfrak{g}}$ be a complex simple Lie algebra of rank $r$ assoc. to Cartan matrix $(a_{ij})_{i,j\in \overline{I}}$, $\overline{I}=\{1,\cdots, r\}$
+
* <math>\overline{\mathfrak{g}}</math> : complex simple Lie algebra of rank <math>r</math> assoc. to Cartan matrix <math>(a_{ij})_{i,j\in \overline{I}}</math>, <math>\overline{I}=\{1,\cdots, r\}</math>
* untwisted affine Kac-Moody algebra $\mathfrak{g}$
+
* untwisted affine Kac-Moody algebra <math>\mathfrak{g}</math>
$$\mathfrak{g}=\overline{\mathfrak{g}}\otimes\mathbb{C}[t,t^{-1}]\oplus\mathbb{C}c \oplus\mathbb{C}d$$
+
:<math>\mathfrak{g}=\overline{\mathfrak{g}}\otimes\mathbb{C}[t,t^{-1}]\oplus\mathbb{C}c \oplus\mathbb{C}d</math>
* <math>(a_{ij})_{i,j\in I}</math> : extended Cartan matrix $I=\{0\}\cup \overline{I}$
+
* <math>(a_{ij})_{i,j\in I}</math> : extended Cartan matrix <math>I=\{0\}\cup \overline{I}</math>
 
* can be also defined as a Lie algebra with generators <math>e_i,h_i,f_i , (i=0,1,2,\cdots, r)</math> and relations, for example,
 
* can be also defined as a Lie algebra with generators <math>e_i,h_i,f_i , (i=0,1,2,\cdots, r)</math> and relations, for example,
 
** <math>\left(\text{ad} e_i\right){}^{1-a_{i,j}}\left(e_j\right)=0</math> (<math>i\neq j</math>)
 
** <math>\left(\text{ad} e_i\right){}^{1-a_{i,j}}\left(e_j\right)=0</math> (<math>i\neq j</math>)
*  basis of the Cartan subalgebra $\mathfrak{h}$; <math>h_0,h_ 1,\cdots,h_r,d</math>
+
*  basis of the Cartan subalgebra <math>\mathfrak{h}</math>; <math>h_0,h_ 1,\cdots,h_r,d</math>
*  dual basis for $\mathfrak{h}^{*}$; <math>\Lambda_0,\Lambda_1,\cdots,\Lambda_r,\delta</math>
+
*  dual basis for <math>\mathfrak{h}^{*}</math>; <math>\Lambda_0,\Lambda_1,\cdots,\Lambda_r,\delta</math>
 
* we call <math>\Lambda_0,\Lambda_1,\cdots,\Lambda_r</math> the fundamental weights and  <math>\delta</math> the imaginary root
 
* we call <math>\Lambda_0,\Lambda_1,\cdots,\Lambda_r</math> the fundamental weights and  <math>\delta</math> the imaginary root
 
* simple roots <math>\alpha_0,\alpha_1,\cdots,\alpha_r</math>
 
* simple roots <math>\alpha_0,\alpha_1,\cdots,\alpha_r</math>
* $a_i,\, i=0,1,\dots, r$ : marks
+
* <math>a_i,\, i=0,1,\dots, r</math> : marks
* $a_i^{\vee},\, i=0,1,\dots, r$ : comarks
+
* <math>a_i^{\vee},\, i=0,1,\dots, r</math> : comarks
 
* distinguished elements
 
* distinguished elements
** longest root of $\overline{\mathfrak{g}}$ : $\theta = \sum_{i=1}^{r}a_i\alpha_i$
+
** longest root of <math>\overline{\mathfrak{g}}</math> : <math>\theta = \sum_{i=1}^{r}a_i\alpha_i</math>
 
** central element <math>c=\sum_{i=0}^{r}a_i^{\vee}h _i</math>
 
** central element <math>c=\sum_{i=0}^{r}a_i^{\vee}h _i</math>
 
** imaginary root <math>\delta=\sum_{i=0}^{r}a_i\alpha_i</math>
 
** imaginary root <math>\delta=\sum_{i=0}^{r}a_i\alpha_i</math>
26번째 줄: 35번째 줄:
  
 
===remarks on affine weights===
 
===remarks on affine weights===
* call $k=\lambda(c)$ the level of $\lambda\in \mathfrak{h}^{*}$
+
* call <math>k=\lambda(c)</math> the level of <math>\lambda\in \mathfrak{h}^{*}</math>
* sometimes convenient to write $\lambda\in \mathfrak{h}^{*}$ as $\lambda=(k;\overline{\lambda};\xi)\in \mathbb{C}\times \overline{\mathfrak{h}}^{*}\times \mathbb{C}$ where $k=\lambda(c)$, $\overline{\lambda}$ is the restriction of $\lambda$ on $\overline{\mathfrak{h}}$, $\xi=\lambda(\delta)$
+
* sometimes convenient to write <math>\lambda\in \mathfrak{h}^{*}</math> as <math>\lambda=(k;\overline{\lambda};\xi)\in \mathbb{C}\times \overline{\mathfrak{h}}^{*}\times \mathbb{C}</math> where <math>k=\lambda(c)</math>, <math>\overline{\lambda}</math> is the restriction of <math>\lambda</math> on <math>\overline{\mathfrak{h}}</math>, <math>\xi=\lambda(\delta)</math>
** $\Lambda_0 = (a_0^{\vee};0;0)$
+
** <math>\Lambda_0 = (a_0^{\vee};0;0)</math>
** $\Lambda_i = (a_i^{\vee};\omega_i;0)$, for $i=1,\dots, r$ ($\omega_i$ is fundamental weight for $\overline{\mathfrak{g}}$)
+
** <math>\Lambda_i = (a_i^{\vee};\omega_i;0)</math>, for <math>i=1,\dots, r</math> (<math>\omega_i</math> is fundamental weight for <math>\overline{\mathfrak{g}}</math>)
** $\delta = (0;0;0)$, for $i=1,\dots, r$
+
** <math>\delta = (0;0;0)</math>, for <math>i=1,\dots, r</math>
** $\alpha_0 = (0;-\theta;1)$
+
** <math>\alpha_0 = (0;-\theta;1)</math>
** $\alpha_i = (0;\alpha_i;0)$, for $i=1,\dots, r$ ($\alpha_i$ simple root for $\overline{\mathfrak{g}}$)
+
** <math>\alpha_i = (0;\alpha_i;0)</math>, for <math>i=1,\dots, r</math> (<math>\alpha_i</math> simple root for <math>\overline{\mathfrak{g}}</math>)
* bilinear form $(\cdot|\cdot)$ on $\mathfrak{h}^{*}$
+
* bilinear form <math>(\cdot|\cdot)</math> on <math>\mathfrak{h}^{*}</math>
** $\left((k_1;\overline{\lambda}_1;\xi_1)|(k_2;\overline{\lambda}_2;\xi_2)\right) = k_1\xi_2+k_2\xi_1+(\overline{\lambda}_1|\overline{\lambda}_2)_{\overline{\mathfrak{h}}^{*}}$
+
** <math>\left((k_1;\overline{\lambda}_1;\xi_1)|(k_2;\overline{\lambda}_2;\xi_2)\right) = k_1\xi_2+k_2\xi_1+(\overline{\lambda}_1|\overline{\lambda}_2)_{\overline{\mathfrak{h}}^{*}}</math>
* normalize $(\cdot|\cdot)$ so that $(\theta|\theta)_{\overline{\mathfrak{h}}^{*}}=2$
+
* normalize <math>(\cdot|\cdot)</math> so that <math>(\theta|\theta)_{\overline{\mathfrak{h}}^{*}}=2</math>
* sometimes write $\overline{\lambda} = (0;\overline{\lambda};0)$ by abusing notation
+
* sometimes write <math>\overline{\lambda} = (0;\overline{\lambda};0)</math> by abusing notation
* let $Q=\sum_{i=1}^{r}\Z\, \alpha_i\subseteq \mathfrak{h}^{*}$ (root lattice of $\overline{\mathfrak{g}}$)
+
* let <math>Q=\sum_{i=1}^{r}\Z\, \alpha_i\subseteq \mathfrak{h}^{*}</math> (root lattice of <math>\overline{\mathfrak{g}}</math>)
* define $M\subseteq Q$ : $M=\{\sum_{i=1}^{r}\Z\, \alpha_i^{\vee}\}$ where $\alpha_i^{\vee}=t_i\alpha_i$ where $t_i=\frac{2}{(\alpha_i|\alpha_i)}$
+
* define <math>M\subseteq Q</math> by <math>M=\{\sum_{i=1}^{r}\Z\, \alpha_i^{\vee}\}</math> where <math>\alpha_i^{\vee}=t_i\alpha_i</math> where <math>t_i=\frac{2}{(\alpha_i|\alpha_i)}</math>
  
 
===affine Weyl group===
 
===affine Weyl group===
 
* [[Affine Weyl group]]
 
* [[Affine Weyl group]]
* The affine Weyl group $W$ is generated by $s_0,s_1,\cdots, s_r\in \operatorname{Aut}\,\mathfrak{h}^{*}$ defined by
+
* The affine Weyl group <math>W</math> is generated by <math>s_0,s_1,\cdots, s_r\in \operatorname{Aut}\,\mathfrak{h}^{*}</math> defined by
$$s_{i}\lambda = \lambda -\lambda(h_i)\alpha_i$$
+
:<math>s_{i}\lambda = \lambda -\lambda(h_i)\alpha_i</math>
for $i=0,1, \cdots, r$.  
+
for <math>i=0,1, \cdots, r</math>.  
* for $\gamma\in \mathfrak{h}^{*}$, define $t_{\gamma} : \mathfrak{h}^{*}\to \mathfrak{h}^{*}$ by
+
* for <math>\gamma\in \mathfrak{h}^{*}</math>, define <math>t_{\gamma} : \mathfrak{h}^{*}\to \mathfrak{h}^{*}</math> by
$$t_{\gamma}(\lambda)=\lambda+\lambda(c)\gamma-\left(\frac{1}{2}\lambda(c)|\gamma|^2+(\gamma|\lambda)\right)\delta $$
+
:<math>t_{\gamma}(\lambda)=\lambda+\lambda(c)\gamma-\left(\frac{1}{2}\lambda(c)|\gamma|^2+(\gamma|\lambda)\right)\delta </math>
 
;thm
 
;thm
Let $T=\{t_{\gamma}|\gamma\in M\}$. Then $W=\overline{W} \ltimes T$
+
Let <math>T=\{t_{\gamma}|\gamma\in M\}</math>. Then <math>W=\overline{W} \ltimes T</math>
  
 
===integrable representations and characters===
 
===integrable representations and characters===
 
* [[Unitary representations of affine Kac-Moody algebras]]
 
* [[Unitary representations of affine Kac-Moody algebras]]
* for each $\lambda\in \mathfrak{h}^{*}$, $\exists$ irreducible $\mathfrak{g}$-module $L(\lambda)$ (quotient of Verma module)
+
* for each <math>\lambda\in \mathfrak{h}^{*}</math>, <math>\exists</math> irreducible <math>\mathfrak{g}</math>-module <math>L(\lambda)</math> (quotient of Verma module)
* A $\mathfrak{g}$-module $V$ is ''integrable'' if $V=\oplus_{\lambda\in \mathfrak{h}^{*}}V_{\lambda}$ and if $e_i : V\to V$ and $f_i : V\to V$ are locally nilpotent for all $i=0,1,\cdots, r$
+
* A <math>\mathfrak{g}</math>-module <math>V</math> is ''integrable'' if <math>V=\oplus_{\lambda\in \mathfrak{h}^{*}}V_{\lambda}</math> and if <math>e_i : V\to V</math> and <math>f_i : V\to V</math> are locally nilpotent for all <math>i=0,1,\cdots, r</math>
* $\Lambda\in \mathfrak{h}^{*}$ is dominant integral if $\Lambda(\mathfrak{h}_i)\in \mathbb{Z}_{\geq 0},\, i=0,1,\cdots,r$
+
* <math>\Lambda\in \mathfrak{h}^{*}</math> is dominant integral if <math>\Lambda(\mathfrak{h}_i)\in \mathbb{Z}_{\geq 0},\, i=0,1,\cdots,r</math>
* let $P_{+}$ be the set of dominant integral weights, i.e. $\{\Lambda\in \mathfrak{h}^{*}|\Lambda=\sum_{i=0}^{l}\lambda_{i}\Lambda_i+\xi \delta, \lambda_i \in\mathbb{Z}_{\geq 0},\xi \in \mathbb{C}\}
+
* let <math>P_{+}</math> be the set of dominant integral weights, i.e. <math>\{\Lambda\in \mathfrak{h}^{*}|\Lambda=\sum_{i=0}^{l}\lambda_{i}\Lambda_i+\xi \delta, \lambda_i \in\mathbb{Z}_{\geq 0},\xi \in \mathbb{C}\}
$
+
</math>
 
;thm
 
;thm
Let $V$ be an irreducible $\mathfrak{g}$-module in a certain category $\mathcal{O}$. Then $V=L(\Lambda)$ for some $\Lambda\in \mathfrak{h}^{*}$ and  
+
Let <math>V</math> be an irreducible <math>\mathfrak{g}</math>-module in a certain category <math>\mathcal{O}</math>. Then <math>V=L(\Lambda)</math> for some <math>\Lambda\in \mathfrak{h}^{*}</math> and  
$L(\Lambda)$ is integrable if and only if $\Lambda\in P_{+}$
+
<math>L(\Lambda)</math> is integrable if and only if <math>\Lambda\in P_{+}</math>
 
* why care irreducible and integrable representation? Weyl's character formula holds
 
* why care irreducible and integrable representation? Weyl's character formula holds
 
* character of <math>L(\Lambda)</math>
 
* character of <math>L(\Lambda)</math>
$$\operatorname{ch} L(\Lambda):=\sum_{\lambda\in \mathfrak{h}^{*}}\operatorname{mult}_{\Lambda}(\lambda) e^{\lambda}$$
+
:<math>\operatorname{ch} L(\Lambda):=\sum_{\lambda\in \mathfrak{h}^{*}}\operatorname{mult}_{\Lambda}(\lambda) e^{\lambda}</math>
 
;thm (Weyl-Kac formula)
 
;thm (Weyl-Kac formula)
Let $\Lambda\in P_{+}$. Then
+
Let <math>\Lambda\in P_{+}</math>. Then
$$
+
:<math>
 
\operatorname{ch} L(\Lambda)=\frac{\sum_{w\in W} (-1)^{\ell(w)}w(e^{\Lambda+\rho})}{\sum_{w\in W} (-1)^{\ell(w)}w(e^{\rho})}
 
\operatorname{ch} L(\Lambda)=\frac{\sum_{w\in W} (-1)^{\ell(w)}w(e^{\Lambda+\rho})}{\sum_{w\in W} (-1)^{\ell(w)}w(e^{\rho})}
$$
+
</math>
  
 
;remark
 
;remark
For actual computation of $m_{\lambda} = \operatorname{mult}_{\lambda}(\lambda)$, more practical to use Freudenthal multiplicity formula
+
For actual computation of <math>m_{\lambda} = \operatorname{mult}_{\lambda}(\lambda)</math>, more practical to use Freudenthal multiplicity formula
$$
+
:<math>
 
(|\Lambda+\rho|^2-|\lambda+\rho|^2)m_{\lambda}=2\sum_{\alpha\in \Delta_{+}}\sum_{j\geq 1}(\operatorname{mult} \alpha)(\lambda+j\alpha|\alpha)m_{\lambda+j\alpha}
 
(|\Lambda+\rho|^2-|\lambda+\rho|^2)m_{\lambda}=2\sum_{\alpha\in \Delta_{+}}\sum_{j\geq 1}(\operatorname{mult} \alpha)(\lambda+j\alpha|\alpha)m_{\lambda+j\alpha}
$$
+
</math>
 
 
===theta functions===
 
* [[Theta functions in Kac-Moody algebras]]
 
* for each $\lambda\in P^k$, define the theta function as
 
$$
 
\Theta_{\lambda}=
 
e^{-\frac{|\lambda|^2\delta}{2k}}\sum_{\gamma \in M}e^{t_{\gamma}(\lambda)}=e^{k\Lambda_0}\sum_{\gamma\in M+\overline{\lambda}/k}e^{-\frac{1}{2}k|\gamma|^2 \delta + k \gamma}
 
$$
 
  
 
==string functions==
 
==string functions==
 
* [[String functions and branching functions]]
 
* [[String functions and branching functions]]
* $\Lambda\in P_{+}^{k}$
+
* Fix <math>\Lambda\in P_{+}^{k}</math>
* A weight $\mu$ of $L(\Lambda)$ is ''maximal'' if $\mu+\delta$ is not a weight
 
* for each $\mu$, there exists a unique integer $n\geq 0$ such that $\mu+n\delta$ is maximal
 
* define $m_{\Lambda}=\frac{(\Lambda+\rho)^2}{2(k+h^{\vee})}-\frac{\rho^2}{2h^{\vee}}$ and $m_{\Lambda,\lambda}=m_{\Lambda}-\frac{\lambda^2}{2k}$
 
* note that $m_{\Lambda}=h_{\Lambda}-\frac{c_{\Lambda}}{24}+\xi$ where $h_{\Lambda}=\frac{(\bar{\Lambda}+2\bar{\rho}|\bar{\Lambda})}{2(k+h^{\vee})}$ and $c_{\Lambda}=\frac{k}{k+h^{\vee}}\dim \mathfrak{\overline{g}}$
 
* the set $\max(\Lambda)$ of maximal weights is stable under $W$
 
 
;def
 
;def
For each $\lambda\in \mathfrak{h}^{*}$, the string function $c_{\lambda }^{\Lambda}$ is defined by
+
For each <math>\lambda\in \mathfrak{h}^{*}</math>, the string function <math>c_{\lambda }^{\Lambda}</math> is  
$$
+
:<math>
 
c_{\lambda }^{\Lambda}=e^{-m_{\Lambda,\lambda}\delta}\sum_{n=-\infty}^{\infty}\operatorname{mult}_{\Lambda}(\lambda-n\delta)e^{-n \delta}
 
c_{\lambda }^{\Lambda}=e^{-m_{\Lambda,\lambda}\delta}\sum_{n=-\infty}^{\infty}\operatorname{mult}_{\Lambda}(\lambda-n\delta)e^{-n \delta}
$$
+
</math>
 +
where <math>m_{\Lambda}=\frac{(\Lambda+\rho)^2}{2(k+h^{\vee})}-\frac{\rho^2}{2h^{\vee}}</math> and <math>m_{\Lambda,\lambda}=m_{\Lambda}-\frac{\lambda^2}{2k}</math>
 +
* note that <math>m_{\Lambda}=h_{\Lambda}-\frac{c(k)}{24}+\xi</math> where <math>h_{\Lambda}=\frac{(\bar{\Lambda}+2\bar{\rho}|\bar{\Lambda})}{2(k+h^{\vee})}</math> and <math>c(k)=\frac{k}{k+h^{\vee}}\dim \mathfrak{\overline{g}}</math> (these number frequently appear in rep. theory of Virasoro algebra)
  
 +
;remarks
 +
* modular form of weight <math>-r/2</math> after setting <math>q:=e^{-\delta}</math>
 
* an explicit expression for the string functions is not known in general
 
* an explicit expression for the string functions is not known in general
 
* the few that are known were guessed using the modular transformations
 
* the few that are known were guessed using the modular transformations
* modular form of weight $-r/2$
+
* <math>c_{\lambda }^{\Lambda}=c_{w\lambda }^{\Lambda}</math> for <math>w\in W</math>
===properties===
+
* [[Theta functions in Kac-Moody algebras]]
* $c_{\lambda }^{\Lambda}=c_{w\lambda }^{\Lambda}$ for $w\in W$
+
* for each <math>\lambda\in P^k</math>, define the theta function as
 +
:<math>
 +
\Theta_{\lambda}=
 +
e^{-\frac{|\lambda|^2\delta}{2k}}\sum_{\gamma \in M}e^{t_{\gamma}(\lambda)}=e^{k\Lambda_0}\sum_{\gamma\in M+\overline{\lambda}/k}e^{-\frac{1}{2}k|\gamma|^2 \delta + k \gamma}
 +
</math>
 +
 
 +
* A weight <math>\lambda</math> of <math>L(\Lambda)</math> is ''maximal'' if <math>\lambda+\delta</math> is not a weight
 +
* the set <math>\max(\Lambda)</math> of maximal weights is stable under <math>W</math>
 +
 
  
 
;thm
 
;thm
We have
+
:<math>
$$
 
 
e^{-m_{\Lambda}\delta}\operatorname{ch} L(\Lambda)=\sum_{\lambda}c^{\Lambda}_{\lambda }\Theta_{\lambda}
 
e^{-m_{\Lambda}\delta}\operatorname{ch} L(\Lambda)=\sum_{\lambda}c^{\Lambda}_{\lambda }\Theta_{\lambda}
$$
+
</math>
  
 
;proof
 
;proof
$$
+
:<math>
 
\begin{aligned}
 
\begin{aligned}
\operatorname{ch} L(\Lambda)&=\sum_{\lambda\in \max{L(\Lambda)}}\sum_{n=0}^{\infty}\operatorname{mult}_{\Lambda}(\lambda-n\delta)e^{\lambda-n \delta}\\
+
\operatorname{ch} L(\Lambda)&=\sum_{\lambda\in \max{L(\Lambda)}}\sum_{n=0}^{\infty}\operatorname{mult}_{\Lambda}(\lambda-n\delta)e^{\lambda-n \delta}  
&=\sum_{\lambda\in \max{L(\Lambda)} \mod kQ^{\vee}} \left(\sum_{\gamma\in M}e^{t_{\gamma}(\lambda)}\right)\sum_{n=0}^{\infty}\left(\operatorname{mult}_{\Lambda}(\lambda-n\delta)e^{-n\delta}\right)\\
+
&&
&=\sum_{\lambda\in \max{L(\Lambda)} \mod kQ^{\vee}} e^{m_{\Lambda,\lambda}\delta}e^{-m_{\Lambda,\lambda}\delta}\left(\sum_{\gamma\in M}e^{t_{\gamma}(\lambda)}\right)\sum_{n=0}^{\infty}\left(\operatorname{mult}_{\Lambda}(\lambda-n\delta)e^{-n\delta}\right)\\
+
\text{(any weight <math>\mu</math> is of the form <math>\lambda-n \delta</math> for some unique <math>\lambda, n</math>)}
&=\sum_{\lambda\in \max{L(\Lambda)} \mod kQ^{\vee}} e^{(m_{\Lambda}-\frac{\lambda^2}{2k})\delta}e^{-m_{\Lambda,\lambda}\delta}\left(\sum_{\gamma\in M}e^{t_{\gamma}(\lambda)}\right)\sum_{n=0}^{\infty}\left(\operatorname{mult}_{\Lambda}(\lambda-n\delta)e^{-n\delta}\right)\\
+
\\
&=\sum_{\lambda\in \max{L(\Lambda)} \mod kQ^{\vee}} e^{m_{\Lambda}\delta}c^{\Lambda}_{\lambda}\Theta_{\lambda}
+
&=\sum_{\lambda\in \max{L(\Lambda)}/T} \left(\sum_{\gamma\in M}e^{t_{\gamma}(\lambda)}\right)\left(\sum_{n=0}^{\infty}\operatorname{mult}_{\Lambda}(\lambda-n\delta)e^{-n\delta}\right)\\
 +
&=\sum_{\lambda\in \max{L(\Lambda)}/T} e^{m_{\Lambda}\delta}c^{\Lambda}_{\lambda}\Theta_{\lambda}
 
\end{aligned}
 
\end{aligned}
$$
+
</math>
 
 
 
===modular transformations===
 
;thm
 
We have
 
$$
 
c_{\lambda }^{\Lambda}(-\frac{1}{\tau})=(\frac{\tau}{i})^{-r/2}\sum_{(\Lambda',\lambda')}b(\Lambda,\lambda,\Lambda',\lambda')c_{\lambda'}^{\Lambda'}(\tau)
 
$$
 
where
 
$$
 
b(\Lambda,\lambda,\Lambda',\lambda')=(*)\exp(\frac{2\pi i(\lambda|\lambda')}{k}) \sum_{w\in \overline{W}} (-1)^{\ell(w)}\exp \left(-{\frac{2\pi i ( w(\Lambda+\rho)|\Lambda'+\rho)}{k+h^{\vee}}}\right)
 
$$
 
and the sum is over all $\Lambda'\in P_{+}^k$ and $\lambda' \in P^k \mod kM+\mathbb{C}\delta$
 
  
  
 
===asymptotic growth of coefficients===
 
===asymptotic growth of coefficients===
* use the circle method
+
* modularity of <math>c_{\lambda }^{\Lambda}</math> implies
 
;thm (Kac-Peterson)
 
;thm (Kac-Peterson)
Let $\Lambda\in P_{k}^{+},\, \lambda\in \max(\Lambda)$. As $n\to \infty$,  
+
Let <math>\Lambda\in P_{k}^{+},\, \lambda\in \max(\Lambda)</math>. As <math>n\to \infty</math>,  
$$
+
:<math>
\operatorname{mult}_{\Lambda}(\lambda-n\delta)\sim (\text{const})\times n^{-(1/4)(r+3)}e^{4\pi (a n)^{1/2}}
+
\log (\operatorname{mult}_{\Lambda}(\lambda-n\delta))\sim (\frac{2c(k)\pi^2n}{3})^{1/2}
$$
+
</math>
where
 
$a=$
 
  
==Rogers-Ramanujan identities for string functions==
+
==conjectural formula for string functions==
 
* [[Fermionic formula for string functions and parafermion characters]]
 
* [[Fermionic formula for string functions and parafermion characters]]
* now we denote the level by $\ell\in \mathbb{Z}$ and assume $\ell\geq 2$
+
* denote the level by <math>\ell\in \mathbb{Z}</math> and assume <math>\ell\geq 2</math>
* $H_\ell=\{(a,m)|a=1,\cdots, r, 1\leq m \leq t_a \ell-1\}$
+
* <math>H_\ell=\{(a,m)|a=1,\cdots, r, 1\leq m \leq t_a \ell-1\}</math>
 
* let  
 
* let  
$$
+
:<math>
 
K^{m n}_{a b} = \Bigl(\hbox{min}(t_bm, t_an) - {m n\over \ell}\Bigr)
 
K^{m n}_{a b} = \Bigl(\hbox{min}(t_bm, t_an) - {m n\over \ell}\Bigr)
 
(\alpha_a \vert \alpha_b)
 
(\alpha_a \vert \alpha_b)
$$
+
</math>
  
;conjecture '''[KNS93]'''
+
;conjecture '''[Kuniba-Nakanishi-Suzuki 93]'''
 
We have
 
We have
 
\begin{equation}\label{qkns}
 
\begin{equation}\label{qkns}
 
c^{\ell\Lambda_0}_\lambda(q)\cdot \eta(\tau)^r=
 
c^{\ell\Lambda_0}_\lambda(q)\cdot \eta(\tau)^r=
\sum_{\{N^{(a)}_m\}}\frac{q^{\frac{1}{2}\sum_{(a,m), (b,n) \in H_\ell}
+
\sum_{\{(N^{(a)}_m)\}}\frac{q^{\frac{1}{2}\sum_{(a,m), (b,n) \in H_\ell}
 
K^{mn}_{ab}N^{(a)}_mN^{(b)}_n}}
 
K^{mn}_{ab}N^{(a)}_mN^{(b)}_n}}
 
{\prod_{(a,m) \in H_\ell}(1-q)(1-q^2)\cdots (1-q^{N^{(a)}_m})}
 
{\prod_{(a,m) \in H_\ell}(1-q)(1-q^2)\cdots (1-q^{N^{(a)}_m})}
 
\end{equation}
 
\end{equation}
up to a rational power of $q$.  
+
up to a rational power of <math>q</math>, where <math>\eta</math> is the Dedekind eta function .
 +
 
 
The outer sum is over  
 
The outer sum is over  
$N^{(a)}_m \in \Z_{\ge 0}$
+
<math>N^{(a)}_m \in \Z_{\ge 0}</math>
 
such that  
 
such that  
$$\sum_{(a,m) \in H_\ell}mN^{(a)}_m\alpha_a \equiv \overline{\lambda}
+
:<math>\sum_{(a,m) \in H_\ell}mN^{(a)}_m\overline{\alpha_a} \equiv \overline{\lambda}
\mod \ell M.$$
+
\mod \ell M.</math>
  
 
===example===
 
===example===
* let $\mathfrak{g}=A_1$
+
* let <math>\mathfrak{g}=A_1</math>
* consider the vacuum representation of level $\ell$
 
 
;thm '''[Lepowski-Primc 1985]'''
 
;thm '''[Lepowski-Primc 1985]'''
$$
+
:<math>
 
c^{\ell\Lambda_0}_{\ell\Lambda_0}(\tau)\cdot \eta(\tau)=\sum_{(N_1,\dots,N_{\ell-1})\in \mathbb{Z}_{\geq 0}^{\ell-1}}\frac{q^{\sum_{n,m=1}^{\ell-1} N_n N_m (\min (n,m) -\frac{nm}{\ell})}}
 
c^{\ell\Lambda_0}_{\ell\Lambda_0}(\tau)\cdot \eta(\tau)=\sum_{(N_1,\dots,N_{\ell-1})\in \mathbb{Z}_{\geq 0}^{\ell-1}}\frac{q^{\sum_{n,m=1}^{\ell-1} N_n N_m (\min (n,m) -\frac{nm}{\ell})}}
 
{\prod_{m=1}^{\ell-1}(1-q)\cdots(1-q^{N_m})}
 
{\prod_{m=1}^{\ell-1}(1-q)\cdots(1-q^{N_m})}
$$
+
</math>
 
where the sum is under the constraint
 
where the sum is under the constraint
$ \sum_{m=1}^{\ell-1} m N_m  
+
<math> \sum_{m=1}^{\ell-1} m N_m  
 
\equiv 0
 
\equiv 0
\ \mathrm{mod}\ \ell$.
+
\ \mathrm{mod}\ \ell</math>.
* the associated matrix is $2\otimes \mathcal{C}(A_{\ell-1})^{-1}$
+
 
 +
 
 +
===evidence===
 +
* compare the asymptotic behavior of \ref{qkns} as <math>t\to 0</math> with <math>q=e^{-t}</math>
 +
* LHS of \ref{qkns} <math>\exp(\frac{\pi^2(c(\ell)-r)}{6t})</math>
 +
* RHS of \ref{qkns} <math>\exp(\frac{\sum_{(a,m)\in H_\ell} L(x_{m}^{(a)})}{t})</math>
 +
where <math>0<x_{m}^{(a)}<1</math> is the solution of the system of equations
 +
:<math>
 +
x_{m}^{(a)} = \prod_{(b,n)\in H_{\ell}}(1-x_{n}^{(b)})^{K_{ab}^{mn}},\, (a,m)\in H_{\ell}
 +
</math>
 +
and <math>L</math> is the Rogers dilogarithm function
 +
:<math>
 +
L(x) = \operatorname{Li}_ 2(x)+\frac{1}{2}\log x\log (1-x),\, 0<x<1
 +
</math>
 +
:<math>
 +
\operatorname{Li}_ 2(x)= \sum_{n=1}^\infty {x^n \over n^2},\, 0<x<1
 +
</math>
 +
;thm (Chapoton, Nakanishi)
 +
:<math>
 +
\sum_{(a,m)\in H_\ell} L(x_{m}^{(a)}) = \frac{\pi^2}{6}(c(\ell)-r)
 +
</math>
 +
* proof uses Y-systems and cluster algebras
 +
 
 +
===example===
 +
* <math>\overline{\mathfrak{g}} = B_2</math>, level <math>\ell = 2</math>, rank <math>r=2</math>
 +
* <math>t_1=1,t_2=2</math>
 +
* <math>H_{\ell} = \{(1,1),(2,1),(2,2),(2,3)\}</math>
 +
* dual Coxeter number : <math>h^{\vee}=3</math>
 +
* <math>\dim \overline{\mathfrak{g}}=10</math>
 +
* <math>c(\ell)-r = 4-2=2</math>
 +
* <math>K = \left(
 +
\begin{array}{cccc}
 +
2 & -1 & -2 & -1 \\
 +
-1 & 3 & 2 & 1 \\
 +
-2 & 2 & 4 & 2 \\
 +
-1 & 1 & 2 & 3 \\
 +
\end{array}
 +
\right)/2</math>
 +
* equation for <math>x^{(a)}_m</math>
 +
:<math>
 +
\begin{aligned}
 +
x^{(1)}_1 & = (1-x^{(1)}_1)(1-x^{(2)}_1)^{-1/2}(1-x^{(2)}_2)^{-1}(1-x^{(2)}_3)^{-1/2} \\
 +
x^{(2)}_1 & = (1-x^{(1)}_1)^{-1/2}(1-x^{(2)}_1)^{3/2}(1-x^{(2)}_2)^{1}(1-x^{(2)}_3)^{1/2}\\
 +
x^{(2)}_2 & = \dots \\
 +
x^{(2)}_3 & = \dots \\
 +
\end{aligned}
 +
</math>
 +
* <math>x^{(1)}_1= 3/4,x^{(2)}_1= 2/5,x^{(2)}_2= 4/9,x^{(2)}_3= 2/5</math>
 +
:<math>
 +
L\left(\frac{3}{4}\right)+2 L\left(\frac{2}{5}\right)+L\left(\frac{4}{9}\right) = \frac{2\pi^2}{6}
 +
</math>
 +
 
 +
==quantum affine algebras and KR modules==
 +
* Q. is there more representation theoretic way to describe <math>x^{(a)}_m</math>?
 +
* A. these numbers can be obtained from the quantum dimensions of Kirillov-Reshetikhin modules
 +
* <math>\exists</math> bij. between iso. classes of fin.-dim'l irr. reps of <math>\uqg</math> and the set of <math>I</math>-tuples <math>\mathbf{P}=(P_i)_{i\in I}</math> of polys <math>P_i\in \mathbb{C}[z]</math> with <math>P_i(0)=1</math>, called Drinfeld poly.
 +
* KR module <math>W^{(a)}_{m}(u)</math> with <math>a\in I</math>, <math>m\in \mathbb{Z}_{\geq 0}</math> and <math>u\in \mathbb{C}^{\times}</math> is associated with Drinfeld polynomials <math>\mathbf{P}=(P_i)_{i\in I}</math> of the form
 +
:<math>
 +
P_i(z) =
 +
\begin{cases}
 +
\prod _{s=1}^m \left(1- z u q_{a}^{2(s-1)}\right), & \text{if <math>i=a</math>}\\
 +
1, & \text{otherwise} \\
 +
\end{cases}
 +
</math>
 +
where <math>q_{a} = q^{t/t_a}</math> and <math>t=\max_{a\in I}t_a</math>.
 +
 
 +
* The quantum dimension of irr. h.w. <math>U_q(\overline{\mathfrak{g}})</math>-modules <math>L(\lambda)</math> at level <math>k</math> is
 +
:<math>
 +
\frac{\prod_{\alpha\in \Delta_{+}}\sin \frac{\pi(\lambda+\rho|\alpha)}{h^{\vee}+k}}{ \prod_{\in \Delta_{+}}\sin \frac{\pi (\rho|\alpha)}{h^{\vee}+k}}.
 +
</math>
 +
* recovers dimension as <math>k\to \infty</math> (qdim is an alg. int. not necessarily positive)
 +
* regarding <math>W^{(a)}_{m}(u)</math> as <math>U_q(\overline{\mathfrak{g}})</math>, obtain quantum dimension of a KR module
 +
;thm (L.)
 +
Fix level <math>\ell\geq 2</math>. Let <math>Q_{m}^{(a)}</math> be the qdim of <math>W^{(a)}_{m}(u)</math> at level <math>\ell</math>. Then <math>Q_{m}^{(a)}</math> with <math>(a,m)\in H_{\ell}</math> is positive, <math>Q_{t_a\ell}^{(a)}=1</math>, and <math>x^{(a)}_m= 1-\frac{Q_{m-1}^{(a)}Q_{m+1}^{(a)}}{(Q_{m}^{(a)})^2}</math>.
 +
* need fusion ring
 +
===example===
 +
* <math>\overline{\mathfrak{g}} = B_2</math>, level <math>\ell = 2</math>, rank <math>r=2</math>
 +
* <math>Q_{m}^{(1)} = 1,2,1</math> for <math>m=0,1,2</math>
 +
* <math>Q_{m}^{(2)} = 1,\sqrt{5},3,\sqrt{5},1</math> for <math>m=0,1,2,3,4</math>
 +
 
 +
==memo==
 +
:<math>
 +
\operatorname{mult}_{\Lambda}(\lambda-n\delta)\sim (\text{const})\times n^{-(1/4)(r+3)}e^{4\pi (a n)^{1/2}}
 +
</math>
 +
 
  
 
==related items==
 
==related items==
191번째 줄: 269번째 줄:
 
[[분류:Talks and lecture notes]]
 
[[분류:Talks and lecture notes]]
 
[[분류:theta]]
 
[[분류:theta]]
 +
[[분류:migrate]]

2020년 11월 16일 (월) 05:31 기준 최신판

abstract

The character of an irreducible representation with dominant integral highest weight of an affine Lie algebra can be written as a linear combination of theta functions, with coefficients given by string functions which are modular forms. There are still many aspects of string functions that are not well-understood. In this talk I will review the basic properties of them, and explain certain connections with finite-dimensional representations of quantum affine algebras.

key message

  • string functions know about Kirillov-Reshetikhin modules
  • infinite vs. finite

\( \newcommand{\g}{\mathfrak{g}} \newcommand{\h}{\mathfrak{h}} \newcommand{\res}{\operatorname{res}} \newcommand{\uqg}{U_{q}(\g)} \newcommand{\ghat}{\widehat{\g}} \newcommand{\uqghat}{U_{q}(\ghat)} \)

review of affine Lie algebras and their integrable representations

affine Lie algebras

  • Affine Kac-Moody algebra
  • \(\overline{\mathfrak{g}}\) : complex simple Lie algebra of rank \(r\) assoc. to Cartan matrix \((a_{ij})_{i,j\in \overline{I}}\), \(\overline{I}=\{1,\cdots, r\}\)
  • untwisted affine Kac-Moody algebra \(\mathfrak{g}\)

\[\mathfrak{g}=\overline{\mathfrak{g}}\otimes\mathbb{C}[t,t^{-1}]\oplus\mathbb{C}c \oplus\mathbb{C}d\]

  • \((a_{ij})_{i,j\in I}\) : extended Cartan matrix \(I=\{0\}\cup \overline{I}\)
  • can be also defined as a Lie algebra with generators \(e_i,h_i,f_i , (i=0,1,2,\cdots, r)\) and relations, for example,
    • \(\left(\text{ad} e_i\right){}^{1-a_{i,j}}\left(e_j\right)=0\) (\(i\neq j\))
  • basis of the Cartan subalgebra \(\mathfrak{h}\); \(h_0,h_ 1,\cdots,h_r,d\)
  • dual basis for \(\mathfrak{h}^{*}\); \(\Lambda_0,\Lambda_1,\cdots,\Lambda_r,\delta\)
  • we call \(\Lambda_0,\Lambda_1,\cdots,\Lambda_r\) the fundamental weights and \(\delta\) the imaginary root
  • simple roots \(\alpha_0,\alpha_1,\cdots,\alpha_r\)
  • \(a_i,\, i=0,1,\dots, r\) : marks
  • \(a_i^{\vee},\, i=0,1,\dots, r\) : comarks
  • distinguished elements
    • longest root of \(\overline{\mathfrak{g}}\) \[\theta = \sum_{i=1}^{r}a_i\alpha_i\]
    • central element \(c=\sum_{i=0}^{r}a_i^{\vee}h _i\)
    • imaginary root \(\delta=\sum_{i=0}^{r}a_i\alpha_i\)
    • Weyl vector \(\rho=\sum_{i=0}^{r}\Lambda_i\)

remarks on affine weights

  • call \(k=\lambda(c)\) the level of \(\lambda\in \mathfrak{h}^{*}\)
  • sometimes convenient to write \(\lambda\in \mathfrak{h}^{*}\) as \(\lambda=(k;\overline{\lambda};\xi)\in \mathbb{C}\times \overline{\mathfrak{h}}^{*}\times \mathbb{C}\) where \(k=\lambda(c)\), \(\overline{\lambda}\) is the restriction of \(\lambda\) on \(\overline{\mathfrak{h}}\), \(\xi=\lambda(\delta)\)
    • \(\Lambda_0 = (a_0^{\vee};0;0)\)
    • \(\Lambda_i = (a_i^{\vee};\omega_i;0)\), for \(i=1,\dots, r\) (\(\omega_i\) is fundamental weight for \(\overline{\mathfrak{g}}\))
    • \(\delta = (0;0;0)\), for \(i=1,\dots, r\)
    • \(\alpha_0 = (0;-\theta;1)\)
    • \(\alpha_i = (0;\alpha_i;0)\), for \(i=1,\dots, r\) (\(\alpha_i\) simple root for \(\overline{\mathfrak{g}}\))
  • bilinear form \((\cdot|\cdot)\) on \(\mathfrak{h}^{*}\)
    • \(\left((k_1;\overline{\lambda}_1;\xi_1)|(k_2;\overline{\lambda}_2;\xi_2)\right) = k_1\xi_2+k_2\xi_1+(\overline{\lambda}_1|\overline{\lambda}_2)_{\overline{\mathfrak{h}}^{*}}\)
  • normalize \((\cdot|\cdot)\) so that \((\theta|\theta)_{\overline{\mathfrak{h}}^{*}}=2\)
  • sometimes write \(\overline{\lambda} = (0;\overline{\lambda};0)\) by abusing notation
  • let \(Q=\sum_{i=1}^{r}\Z\, \alpha_i\subseteq \mathfrak{h}^{*}\) (root lattice of \(\overline{\mathfrak{g}}\))
  • define \(M\subseteq Q\) by \(M=\{\sum_{i=1}^{r}\Z\, \alpha_i^{\vee}\}\) where \(\alpha_i^{\vee}=t_i\alpha_i\) where \(t_i=\frac{2}{(\alpha_i|\alpha_i)}\)

affine Weyl group

  • Affine Weyl group
  • The affine Weyl group \(W\) is generated by \(s_0,s_1,\cdots, s_r\in \operatorname{Aut}\,\mathfrak{h}^{*}\) defined by

\[s_{i}\lambda = \lambda -\lambda(h_i)\alpha_i\] for \(i=0,1, \cdots, r\).

  • for \(\gamma\in \mathfrak{h}^{*}\), define \(t_{\gamma} : \mathfrak{h}^{*}\to \mathfrak{h}^{*}\) by

\[t_{\gamma}(\lambda)=\lambda+\lambda(c)\gamma-\left(\frac{1}{2}\lambda(c)|\gamma|^2+(\gamma|\lambda)\right)\delta \]

thm

Let \(T=\{t_{\gamma}|\gamma\in M\}\). Then \(W=\overline{W} \ltimes T\)

integrable representations and characters

  • Unitary representations of affine Kac-Moody algebras
  • for each \(\lambda\in \mathfrak{h}^{*}\), \(\exists\) irreducible \(\mathfrak{g}\)-module \(L(\lambda)\) (quotient of Verma module)
  • A \(\mathfrak{g}\)-module \(V\) is integrable if \(V=\oplus_{\lambda\in \mathfrak{h}^{*}}V_{\lambda}\) and if \(e_i : V\to V\) and \(f_i : V\to V\) are locally nilpotent for all \(i=0,1,\cdots, r\)
  • \(\Lambda\in \mathfrak{h}^{*}\) is dominant integral if \(\Lambda(\mathfrak{h}_i)\in \mathbb{Z}_{\geq 0},\, i=0,1,\cdots,r\)
  • let \(P_{+}\) be the set of dominant integral weights, i.e. \(\{\Lambda\in \mathfrak{h}^{*}|\Lambda=\sum_{i=0}^{l}\lambda_{i}\Lambda_i+\xi \delta, \lambda_i \in\mathbb{Z}_{\geq 0},\xi \in \mathbb{C}\} \)
thm

Let \(V\) be an irreducible \(\mathfrak{g}\)-module in a certain category \(\mathcal{O}\). Then \(V=L(\Lambda)\) for some \(\Lambda\in \mathfrak{h}^{*}\) and \(L(\Lambda)\) is integrable if and only if \(\Lambda\in P_{+}\)

  • why care irreducible and integrable representation? Weyl's character formula holds
  • character of \(L(\Lambda)\)

\[\operatorname{ch} L(\Lambda):=\sum_{\lambda\in \mathfrak{h}^{*}}\operatorname{mult}_{\Lambda}(\lambda) e^{\lambda}\]

thm (Weyl-Kac formula)

Let \(\Lambda\in P_{+}\). Then \[ \operatorname{ch} L(\Lambda)=\frac{\sum_{w\in W} (-1)^{\ell(w)}w(e^{\Lambda+\rho})}{\sum_{w\in W} (-1)^{\ell(w)}w(e^{\rho})} \]

remark

For actual computation of \(m_{\lambda} = \operatorname{mult}_{\lambda}(\lambda)\), more practical to use Freudenthal multiplicity formula \[ (|\Lambda+\rho|^2-|\lambda+\rho|^2)m_{\lambda}=2\sum_{\alpha\in \Delta_{+}}\sum_{j\geq 1}(\operatorname{mult} \alpha)(\lambda+j\alpha|\alpha)m_{\lambda+j\alpha} \]

string functions

def

For each \(\lambda\in \mathfrak{h}^{*}\), the string function \(c_{\lambda }^{\Lambda}\) is \[ c_{\lambda }^{\Lambda}=e^{-m_{\Lambda,\lambda}\delta}\sum_{n=-\infty}^{\infty}\operatorname{mult}_{\Lambda}(\lambda-n\delta)e^{-n \delta} \] where \(m_{\Lambda}=\frac{(\Lambda+\rho)^2}{2(k+h^{\vee})}-\frac{\rho^2}{2h^{\vee}}\) and \(m_{\Lambda,\lambda}=m_{\Lambda}-\frac{\lambda^2}{2k}\)

  • note that \(m_{\Lambda}=h_{\Lambda}-\frac{c(k)}{24}+\xi\) where \(h_{\Lambda}=\frac{(\bar{\Lambda}+2\bar{\rho}|\bar{\Lambda})}{2(k+h^{\vee})}\) and \(c(k)=\frac{k}{k+h^{\vee}}\dim \mathfrak{\overline{g}}\) (these number frequently appear in rep. theory of Virasoro algebra)
remarks
  • modular form of weight \(-r/2\) after setting \(q:=e^{-\delta}\)
  • an explicit expression for the string functions is not known in general
  • the few that are known were guessed using the modular transformations
  • \(c_{\lambda }^{\Lambda}=c_{w\lambda }^{\Lambda}\) for \(w\in W\)
  • Theta functions in Kac-Moody algebras
  • for each \(\lambda\in P^k\), define the theta function as

\[ \Theta_{\lambda}= e^{-\frac{|\lambda|^2\delta}{2k}}\sum_{\gamma \in M}e^{t_{\gamma}(\lambda)}=e^{k\Lambda_0}\sum_{\gamma\in M+\overline{\lambda}/k}e^{-\frac{1}{2}k|\gamma|^2 \delta + k \gamma} \]

  • A weight \(\lambda\) of \(L(\Lambda)\) is maximal if \(\lambda+\delta\) is not a weight
  • the set \(\max(\Lambda)\) of maximal weights is stable under \(W\)


thm

\[ e^{-m_{\Lambda}\delta}\operatorname{ch} L(\Lambda)=\sum_{\lambda}c^{\Lambda}_{\lambda }\Theta_{\lambda} \]

proof

\[ \begin{aligned} \operatorname{ch} L(\Lambda)&=\sum_{\lambda\in \max{L(\Lambda)}}\sum_{n=0}^{\infty}\operatorname{mult}_{\Lambda}(\lambda-n\delta)e^{\lambda-n \delta} && \text{(any weight \(\mu\] is of the form <math>\lambda-n \delta\) for some unique \(\lambda, n\))} \\ &=\sum_{\lambda\in \max{L(\Lambda)}/T} \left(\sum_{\gamma\in M}e^{t_{\gamma}(\lambda)}\right)\left(\sum_{n=0}^{\infty}\operatorname{mult}_{\Lambda}(\lambda-n\delta)e^{-n\delta}\right)\\ &=\sum_{\lambda\in \max{L(\Lambda)}/T} e^{m_{\Lambda}\delta}c^{\Lambda}_{\lambda}\Theta_{\lambda} \end{aligned} </math> ■


asymptotic growth of coefficients

  • modularity of \(c_{\lambda }^{\Lambda}\) implies
thm (Kac-Peterson)

Let \(\Lambda\in P_{k}^{+},\, \lambda\in \max(\Lambda)\). As \(n\to \infty\), \[ \log (\operatorname{mult}_{\Lambda}(\lambda-n\delta))\sim (\frac{2c(k)\pi^2n}{3})^{1/2} \]

conjectural formula for string functions

\[ K^{m n}_{a b} = \Bigl(\hbox{min}(t_bm, t_an) - {m n\over \ell}\Bigr) (\alpha_a \vert \alpha_b) \]

conjecture [Kuniba-Nakanishi-Suzuki 93]

We have \begin{equation}\label{qkns} c^{\ell\Lambda_0}_\lambda(q)\cdot \eta(\tau)^r= \sum_{\{(N^{(a)}_m)\}}\frac{q^{\frac{1}{2}\sum_{(a,m), (b,n) \in H_\ell} K^{mn}_{ab}N^{(a)}_mN^{(b)}_n}} {\prod_{(a,m) \in H_\ell}(1-q)(1-q^2)\cdots (1-q^{N^{(a)}_m})} \end{equation} up to a rational power of \(q\), where \(\eta\) is the Dedekind eta function .

The outer sum is over \(N^{(a)}_m \in \Z_{\ge 0}\) such that \[\sum_{(a,m) \in H_\ell}mN^{(a)}_m\overline{\alpha_a} \equiv \overline{\lambda} \mod \ell M.\]

example

  • let \(\mathfrak{g}=A_1\)
thm [Lepowski-Primc 1985]

\[ c^{\ell\Lambda_0}_{\ell\Lambda_0}(\tau)\cdot \eta(\tau)=\sum_{(N_1,\dots,N_{\ell-1})\in \mathbb{Z}_{\geq 0}^{\ell-1}}\frac{q^{\sum_{n,m=1}^{\ell-1} N_n N_m (\min (n,m) -\frac{nm}{\ell})}} {\prod_{m=1}^{\ell-1}(1-q)\cdots(1-q^{N_m})} \] where the sum is under the constraint \( \sum_{m=1}^{\ell-1} m N_m \equiv 0 \ \mathrm{mod}\ \ell\).


evidence

  • compare the asymptotic behavior of \ref{qkns} as \(t\to 0\) with \(q=e^{-t}\)
  • LHS of \ref{qkns} \(\exp(\frac{\pi^2(c(\ell)-r)}{6t})\)
  • RHS of \ref{qkns} \(\exp(\frac{\sum_{(a,m)\in H_\ell} L(x_{m}^{(a)})}{t})\)

where \(0<x_{m}^{(a)}<1\) is the solution of the system of equations \[ x_{m}^{(a)} = \prod_{(b,n)\in H_{\ell}}(1-x_{n}^{(b)})^{K_{ab}^{mn}},\, (a,m)\in H_{\ell} \] and \(L\) is the Rogers dilogarithm function \[ L(x) = \operatorname{Li}_ 2(x)+\frac{1}{2}\log x\log (1-x),\, 0<x<1 \] \[ \operatorname{Li}_ 2(x)= \sum_{n=1}^\infty {x^n \over n^2},\, 0<x<1 \]

thm (Chapoton, Nakanishi)

\[ \sum_{(a,m)\in H_\ell} L(x_{m}^{(a)}) = \frac{\pi^2}{6}(c(\ell)-r) \]

  • proof uses Y-systems and cluster algebras

example

  • \(\overline{\mathfrak{g}} = B_2\), level \(\ell = 2\), rank \(r=2\)
  • \(t_1=1,t_2=2\)
  • \(H_{\ell} = \{(1,1),(2,1),(2,2),(2,3)\}\)
  • dual Coxeter number \[h^{\vee}=3\]
  • \(\dim \overline{\mathfrak{g}}=10\)
  • \(c(\ell)-r = 4-2=2\)
  • \(K = \left( \begin{array}{cccc} 2 & -1 & -2 & -1 \\ -1 & 3 & 2 & 1 \\ -2 & 2 & 4 & 2 \\ -1 & 1 & 2 & 3 \\ \end{array} \right)/2\)
  • equation for \(x^{(a)}_m\)

\[ \begin{aligned} x^{(1)}_1 & = (1-x^{(1)}_1)(1-x^{(2)}_1)^{-1/2}(1-x^{(2)}_2)^{-1}(1-x^{(2)}_3)^{-1/2} \\ x^{(2)}_1 & = (1-x^{(1)}_1)^{-1/2}(1-x^{(2)}_1)^{3/2}(1-x^{(2)}_2)^{1}(1-x^{(2)}_3)^{1/2}\\ x^{(2)}_2 & = \dots \\ x^{(2)}_3 & = \dots \\ \end{aligned} \]

  • \(x^{(1)}_1= 3/4,x^{(2)}_1= 2/5,x^{(2)}_2= 4/9,x^{(2)}_3= 2/5\)

\[ L\left(\frac{3}{4}\right)+2 L\left(\frac{2}{5}\right)+L\left(\frac{4}{9}\right) = \frac{2\pi^2}{6} \]

quantum affine algebras and KR modules

  • Q. is there more representation theoretic way to describe \(x^{(a)}_m\)?
  • A. these numbers can be obtained from the quantum dimensions of Kirillov-Reshetikhin modules
  • \(\exists\) bij. between iso. classes of fin.-dim'l irr. reps of \(\uqg\) and the set of \(I\)-tuples \(\mathbf{P}=(P_i)_{i\in I}\) of polys \(P_i\in \mathbb{C}[z]\) with \(P_i(0)=1\), called Drinfeld poly.
  • KR module \(W^{(a)}_{m}(u)\) with \(a\in I\), \(m\in \mathbb{Z}_{\geq 0}\) and \(u\in \mathbb{C}^{\times}\) is associated with Drinfeld polynomials \(\mathbf{P}=(P_i)_{i\in I}\) of the form

\[ P_i(z) = \begin{cases} \prod _{s=1}^m \left(1- z u q_{a}^{2(s-1)}\right), & \text{if \(i=a\]}\\

1, & \text{otherwise} \\ 

\end{cases} \) where \(q_{a} = q^{t/t_a}\) and \(t=\max_{a\in I}t_a\).

  • The quantum dimension of irr. h.w. \(U_q(\overline{\mathfrak{g}})\)-modules \(L(\lambda)\) at level \(k\) is

\[ \frac{\prod_{\alpha\in \Delta_{+}}\sin \frac{\pi(\lambda+\rho|\alpha)}{h^{\vee}+k}}{ \prod_{\in \Delta_{+}}\sin \frac{\pi (\rho|\alpha)}{h^{\vee}+k}}. \]

  • recovers dimension as \(k\to \infty\) (qdim is an alg. int. not necessarily positive)
  • regarding \(W^{(a)}_{m}(u)\) as \(U_q(\overline{\mathfrak{g}})\), obtain quantum dimension of a KR module
thm (L.)

Fix level \(\ell\geq 2\). Let \(Q_{m}^{(a)}\) be the qdim of \(W^{(a)}_{m}(u)\) at level \(\ell\). Then \(Q_{m}^{(a)}\) with \((a,m)\in H_{\ell}\) is positive, \(Q_{t_a\ell}^{(a)}=1\), and \(x^{(a)}_m= 1-\frac{Q_{m-1}^{(a)}Q_{m+1}^{(a)}}{(Q_{m}^{(a)})^2}\).

  • need fusion ring

example

  • \(\overline{\mathfrak{g}} = B_2\), level \(\ell = 2\), rank \(r=2\)
  • \(Q_{m}^{(1)} = 1,2,1\) for \(m=0,1,2\)
  • \(Q_{m}^{(2)} = 1,\sqrt{5},3,\sqrt{5},1\) for \(m=0,1,2,3,4\)

memo

\[ \operatorname{mult}_{\Lambda}(\lambda-n\delta)\sim (\text{const})\times n^{-(1/4)(r+3)}e^{4\pi (a n)^{1/2}} \]


related items