"Quadratic forms over p-adic integer rings"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
 
(다른 사용자 한 명의 중간 판 하나는 보이지 않습니다)
2번째 줄: 2번째 줄:
 
* Hilbert symbol  
 
* Hilbert symbol  
 
* Hasse invariant
 
* Hasse invariant
$
+
<math>
 
\newcommand\Zp{\Z_p}
 
\newcommand\Zp{\Z_p}
 
\newcommand\Qp{\Q_p}
 
\newcommand\Qp{\Q_p}
12번째 줄: 12번째 줄:
 
\newcommand{\ord}[2]{{\rm ord}_{#1}(#2)}
 
\newcommand{\ord}[2]{{\rm ord}_{#1}(#2)}
 
\newcommand\inv{^{-1}}
 
\newcommand\inv{^{-1}}
$
+
</math>
  
  
  
 
==Hilbert symbol==
 
==Hilbert symbol==
* For $a,b\in\Qpx$ the Hilbert symbol $(a,b)_p$ is $1$ if $aX^2+bY^2=Z^2$ has nontrivial
+
* For <math>a,b\in\Qpx</math> the Hilbert symbol <math>(a,b)_p</math> is <math>1</math> if <math>aX^2+bY^2=Z^2</math> has nontrivial
solutions in $\Qp^3$ and $-1$ if not.  
+
solutions in <math>\Qp^3</math> and <math>-1</math> if not.  
  
  
  
 
==Hasse invariant==
 
==Hasse invariant==
* For $u\in\GL m\Qp^{\rm sym}$ the Hasse invariant of $u$ is $h_p(u)=\prod_{i\le j}(a_i,a_j)_p$ where $u$ is $\GL m\Qp$-equivalent to the diagonal matrix having entries $a_1,\cdots,a_m$.
+
* For <math>u\in\GL m\Qp^{\rm sym}</math> the Hasse invariant of <math>u</math> is <math>h_p(u)=\prod_{i\le j}(a_i,a_j)_p</math> where <math>u</math> is <math>\GL m\Qp</math>-equivalent to the diagonal matrix having entries <math>a_1,\cdots,a_m</math>.
  
 
==computational resource==
 
==computational resource==
30번째 줄: 30번째 줄:
  
 
[[분류:quadratic forms]]
 
[[분류:quadratic forms]]
 +
[[분류:migrate]]

2020년 11월 16일 (월) 04:31 기준 최신판

introduction

  • Hilbert symbol
  • Hasse invariant

\( \newcommand\Zp{\Z_p} \newcommand\Qp{\Q_p} \newcommand\Qpx{\Qp^\times} \newcommand\GL[2]{\operatorname{GL}_{#1}(#2)} \newcommand\GLnZ{\GL n\Z} \newcommand\GLnZp{\GL n{\Zp}} \newcommand\Znn{\Z_{\ge0}} \newcommand{\ord}[2]{{\rm ord}_{#1}(#2)} \newcommand\inv{^{-1}} \)


Hilbert symbol

  • For \(a,b\in\Qpx\) the Hilbert symbol \((a,b)_p\) is \(1\) if \(aX^2+bY^2=Z^2\) has nontrivial

solutions in \(\Qp^3\) and \(-1\) if not.


Hasse invariant

  • For \(u\in\GL m\Qp^{\rm sym}\) the Hasse invariant of \(u\) is \(h_p(u)=\prod_{i\le j}(a_i,a_j)_p\) where \(u\) is \(\GL m\Qp\)-equivalent to the diagonal matrix having entries \(a_1,\cdots,a_m\).

computational resource