"Zamolodchikov's c-theorem"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
imported>Pythagoras0 |
Pythagoras0 (토론 | 기여) |
||
1번째 줄: | 1번째 줄: | ||
==correlation functions== | ==correlation functions== | ||
− | * | + | * <math>\langle T(z,\bar{z})T(0,0) \rangle =\frac{F(|z|^2)}{z^4}</math> |
− | * | + | * <math>\langle \Theta(z,\bar{z})\Theta(0,0) \rangle =\frac{H(|z|^2)}{z^4}</math> |
− | * | + | * <math>\langle T(z,\bar{z})\Theta(0,0) \rangle =\langle \Theta(z,\bar{z})T(0,0) \rangle \frac{G(|z|^2)}{z^3\bar{z}}</math> |
==C-function== | ==C-function== | ||
− | * | + | * <math>C=2F-G-\frac{3}{8}H</math> |
===UV-limit=== | ===UV-limit=== | ||
− | + | :<math> | |
c=-\int_{0}^{\infty}dr \frac{2\dot{C}}{r}=\int_{0}^{\infty}dr \frac{3\dot{H}}{2r}=\frac{3}{2}\int_{0}^{\infty}dr r^3\langle \Theta(z,\bar{z})\Theta(0,0) \rangle | c=-\int_{0}^{\infty}dr \frac{2\dot{C}}{r}=\int_{0}^{\infty}dr \frac{3\dot{H}}{2r}=\frac{3}{2}\int_{0}^{\infty}dr r^3\langle \Theta(z,\bar{z})\Theta(0,0) \rangle | ||
− | + | </math> | |
18번째 줄: | 18번째 줄: | ||
==articles== | ==articles== | ||
− | * Becker, Daniel, and Martin Reuter. “Towards a | + | * Becker, Daniel, and Martin Reuter. “Towards a <math>C</math>-Function in 4D Quantum Gravity.” arXiv:1412.0468 [hep-Th], December 1, 2014. http://arxiv.org/abs/1412.0468. |
2020년 11월 16일 (월) 04:33 판
correlation functions
- \(\langle T(z,\bar{z})T(0,0) \rangle =\frac{F(|z|^2)}{z^4}\)
- \(\langle \Theta(z,\bar{z})\Theta(0,0) \rangle =\frac{H(|z|^2)}{z^4}\)
- \(\langle T(z,\bar{z})\Theta(0,0) \rangle =\langle \Theta(z,\bar{z})T(0,0) \rangle \frac{G(|z|^2)}{z^3\bar{z}}\)
C-function
- \(C=2F-G-\frac{3}{8}H\)
UV-limit
\[ c=-\int_{0}^{\infty}dr \frac{2\dot{C}}{r}=\int_{0}^{\infty}dr \frac{3\dot{H}}{2r}=\frac{3}{2}\int_{0}^{\infty}dr r^3\langle \Theta(z,\bar{z})\Theta(0,0) \rangle \]
expositions
articles
- Becker, Daniel, and Martin Reuter. “Towards a \(C\)-Function in 4D Quantum Gravity.” arXiv:1412.0468 [hep-Th], December 1, 2014. http://arxiv.org/abs/1412.0468.