"Maeda conjecture"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
(새 문서: ==introduction== * problem of counting the number of pairs of normalized eigenforms $(f,g) $ of weight $k$ and level $N$ such that $ a_p (f) = a_p (g) $ where $a_p (f) $ denotes the $...)
 
 
(다른 사용자 한 명의 중간 판 2개는 보이지 않습니다)
1번째 줄: 1번째 줄:
 
==introduction==
 
==introduction==
* problem of counting the number of pairs of normalized eigenforms $(f,g) $ of weight $k$ and level $N$ such that $ a_p (f) = a_p (g) $ where $a_p (f) $ denotes the $p-$th Fourier coefficient of $f$. Here $p$ is a fixed prime.
+
* problem of counting the number of pairs of normalized eigenforms <math>(f,g) </math> of weight <math>k</math> and level <math>N</math> such that <math> a_p (f) = a_p (g) </math> where <math>a_p (f) </math> denotes the <math>p-</math>th Fourier coefficient of <math>f</math>. Here <math>p</math> is a fixed prime.
 +
 
 +
== articles ==
 +
 
 +
* M. Ram Murty, K. Srinivas, Some remarks related to Maeda's conjecture, http://arxiv.org/abs/1603.00813v1
 +
[[분류:migrate]]

2020년 11월 16일 (월) 04:35 기준 최신판

introduction

  • problem of counting the number of pairs of normalized eigenforms \((f,g) \) of weight \(k\) and level \(N\) such that \( a_p (f) = a_p (g) \) where \(a_p (f) \) denotes the \(p-\)th Fourier coefficient of \(f\). Here \(p\) is a fixed prime.

articles