"Current algebra and anomalies in gauge field theory"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
imported>Pythagoras0
27번째 줄: 27번째 줄:
  
 
==expositions==
 
==expositions==
 +
* Treiman, Sam, Roman Jackiw, and David J. Gross. Lectures on Current Algebra and Its Applications. Princeton University Press, 2015. http://www.worldscientific.com/worldscibooks/10.1142/0131
 
* [Pietschmann2011] Pietschmann, Herbert. “On the Early History of Current Algebra.” The European Physical Journal H 36, no. 1 (July 2011): 75–84. doi:10.1140/epjh/e2011-20013-0.
 
* [Pietschmann2011] Pietschmann, Herbert. “On the Early History of Current Algebra.” The European Physical Journal H 36, no. 1 (July 2011): 75–84. doi:10.1140/epjh/e2011-20013-0.
 
* Weinberg, Steven. “Effective Field Theory, Past and Future.” arXiv:0908.1964 [gr-Qc, Physics:hep-Ph, Physics:hep-Th, Physics:physics], August 13, 2009. http://arxiv.org/abs/0908.1964.
 
* Weinberg, Steven. “Effective Field Theory, Past and Future.” arXiv:0908.1964 [gr-Qc, Physics:hep-Ph, Physics:hep-Th, Physics:physics], August 13, 2009. http://arxiv.org/abs/0908.1964.
 +
* Adler, Stephen L. ‘Anomalies’. arXiv:hep-th/0411038, 2 November 2004. http://arxiv.org/abs/hep-th/0411038.
 
* O’Raifeartaigh, L. ‘The Intertwining of Affine Kac–moody and Current Algebras’. International Journal of Modern Physics B 13, no. 24n25 (10 October 1999): 3009–20. doi:[http://dx.doi.org/10.1142/S0217979299002824 10.1142/S0217979299002824].
 
* O’Raifeartaigh, L. ‘The Intertwining of Affine Kac–moody and Current Algebras’. International Journal of Modern Physics B 13, no. 24n25 (10 October 1999): 3009–20. doi:[http://dx.doi.org/10.1142/S0217979299002824 10.1142/S0217979299002824].
* Treiman, Sam, Roman Jackiw, and David J. Gross. Lectures on Current Algebra and Its Applications. Princeton University Press, 2015. http://www.worldscientific.com/worldscibooks/10.1142/0131
 
 
* http://isites.harvard.edu/fs/docs/icb.topic1146666.files/IV-6-Anomalies.pdf
 
* http://isites.harvard.edu/fs/docs/icb.topic1146666.files/IV-6-Anomalies.pdf
 
* Abel, [http://www.maths.dur.ac.uk/~dma0saa/lecture_notes.pdf Anomalies]
 
* Abel, [http://www.maths.dur.ac.uk/~dma0saa/lecture_notes.pdf Anomalies]

2015년 3월 12일 (목) 19:00 판

internal algebra of symmetry

  • an internal symmetry is defined by the algebra of generators

$$ [I_{\alpha},I_{\beta}]=c_{\alpha \beta \gamma}I_{\gamma} $$

  • the generators, in turn, are given by the integral over the time-component of the currents

$$ I_{\alpha}=\int d^3x J_{0,\alpha}(x) $$

  • from these equations one obtains the equal-time commutation relation of the currents

$$ [J_{0,\alpha}(\mathbf{x}),J_{0,\beta}(\mathbf{y})]=c_{\alpha \beta \gamma} J_{0,\alpha}(\mathbf{x})\delta(\mathbf{x}-\mathbf{y}) $$


encyclopedia


related items


expositions

articles

  • Alekseev, Anton, and Thomas Strobl. “Current Algebras and Differential Geometry.” Journal of High Energy Physics 2005, no. 03 (March 15, 2005): 035–035. doi:10.1088/1126-6708/2005/03/035.
  • Sommerfield, Charles M. ‘Currents as Dynamical Variables’. Physical Review 176, no. 5 (25 December 1968): 2019–25. doi:10.1103/PhysRev.176.2019.
  • Sugawara, Hirotaka. ‘A Field Theory of Currents’. Physical Review 170, no. 5 (25 June 1968): 1659–62. doi:10.1103/PhysRev.170.1659.