"Current algebra and anomalies in gauge field theory"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
imported>Pythagoras0 |
imported>Pythagoras0 |
||
27번째 줄: | 27번째 줄: | ||
==expositions== | ==expositions== | ||
+ | * Treiman, Sam, Roman Jackiw, and David J. Gross. Lectures on Current Algebra and Its Applications. Princeton University Press, 2015. http://www.worldscientific.com/worldscibooks/10.1142/0131 | ||
* [Pietschmann2011] Pietschmann, Herbert. “On the Early History of Current Algebra.” The European Physical Journal H 36, no. 1 (July 2011): 75–84. doi:10.1140/epjh/e2011-20013-0. | * [Pietschmann2011] Pietschmann, Herbert. “On the Early History of Current Algebra.” The European Physical Journal H 36, no. 1 (July 2011): 75–84. doi:10.1140/epjh/e2011-20013-0. | ||
* Weinberg, Steven. “Effective Field Theory, Past and Future.” arXiv:0908.1964 [gr-Qc, Physics:hep-Ph, Physics:hep-Th, Physics:physics], August 13, 2009. http://arxiv.org/abs/0908.1964. | * Weinberg, Steven. “Effective Field Theory, Past and Future.” arXiv:0908.1964 [gr-Qc, Physics:hep-Ph, Physics:hep-Th, Physics:physics], August 13, 2009. http://arxiv.org/abs/0908.1964. | ||
+ | * Adler, Stephen L. ‘Anomalies’. arXiv:hep-th/0411038, 2 November 2004. http://arxiv.org/abs/hep-th/0411038. | ||
* O’Raifeartaigh, L. ‘The Intertwining of Affine Kac–moody and Current Algebras’. International Journal of Modern Physics B 13, no. 24n25 (10 October 1999): 3009–20. doi:[http://dx.doi.org/10.1142/S0217979299002824 10.1142/S0217979299002824]. | * O’Raifeartaigh, L. ‘The Intertwining of Affine Kac–moody and Current Algebras’. International Journal of Modern Physics B 13, no. 24n25 (10 October 1999): 3009–20. doi:[http://dx.doi.org/10.1142/S0217979299002824 10.1142/S0217979299002824]. | ||
− | |||
* http://isites.harvard.edu/fs/docs/icb.topic1146666.files/IV-6-Anomalies.pdf | * http://isites.harvard.edu/fs/docs/icb.topic1146666.files/IV-6-Anomalies.pdf | ||
* Abel, [http://www.maths.dur.ac.uk/~dma0saa/lecture_notes.pdf Anomalies] | * Abel, [http://www.maths.dur.ac.uk/~dma0saa/lecture_notes.pdf Anomalies] |
2015년 3월 12일 (목) 19:00 판
internal algebra of symmetry
- an internal symmetry is defined by the algebra of generators
$$ [I_{\alpha},I_{\beta}]=c_{\alpha \beta \gamma}I_{\gamma} $$
- the generators, in turn, are given by the integral over the time-component of the currents
$$ I_{\alpha}=\int d^3x J_{0,\alpha}(x) $$
- from these equations one obtains the equal-time commutation relation of the currents
$$ [J_{0,\alpha}(\mathbf{x}),J_{0,\beta}(\mathbf{y})]=c_{\alpha \beta \gamma} J_{0,\alpha}(\mathbf{x})\delta(\mathbf{x}-\mathbf{y}) $$
- See [Pietschmann2011] and QCD and quarks for more
encyclopedia
expositions
- Treiman, Sam, Roman Jackiw, and David J. Gross. Lectures on Current Algebra and Its Applications. Princeton University Press, 2015. http://www.worldscientific.com/worldscibooks/10.1142/0131
- [Pietschmann2011] Pietschmann, Herbert. “On the Early History of Current Algebra.” The European Physical Journal H 36, no. 1 (July 2011): 75–84. doi:10.1140/epjh/e2011-20013-0.
- Weinberg, Steven. “Effective Field Theory, Past and Future.” arXiv:0908.1964 [gr-Qc, Physics:hep-Ph, Physics:hep-Th, Physics:physics], August 13, 2009. http://arxiv.org/abs/0908.1964.
- Adler, Stephen L. ‘Anomalies’. arXiv:hep-th/0411038, 2 November 2004. http://arxiv.org/abs/hep-th/0411038.
- O’Raifeartaigh, L. ‘The Intertwining of Affine Kac–moody and Current Algebras’. International Journal of Modern Physics B 13, no. 24n25 (10 October 1999): 3009–20. doi:10.1142/S0217979299002824.
- http://isites.harvard.edu/fs/docs/icb.topic1146666.files/IV-6-Anomalies.pdf
- Abel, Anomalies
articles
- Alekseev, Anton, and Thomas Strobl. “Current Algebras and Differential Geometry.” Journal of High Energy Physics 2005, no. 03 (March 15, 2005): 035–035. doi:10.1088/1126-6708/2005/03/035.
- Sommerfield, Charles M. ‘Currents as Dynamical Variables’. Physical Review 176, no. 5 (25 December 1968): 2019–25. doi:10.1103/PhysRev.176.2019.
- Sugawara, Hirotaka. ‘A Field Theory of Currents’. Physical Review 170, no. 5 (25 June 1968): 1659–62. doi:10.1103/PhysRev.170.1659.