"Equivariant Tamagawa number conjecture (ETNC)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
imported>Pythagoras0
1번째 줄: 1번째 줄:
 +
==introduction==
 +
* The local Tamagawa number conjecure, first formulated by Fontaine and Perrin-Riou, expresses the compatibility of the (global) Tamagawa number conjecture on motivic L-functions with the functional equation.
 +
* The local conjecture was proven for Tate motives over finite unramified extensions $K/\mathbb{Q}_p$ by Bloch and Kato.
  
 +
 +
==articles==
 +
* Olivier Fouquet, $p$-adic properties of motivic fundamental lines (Kato's conjecture is (probably) false for (not so) trivial reasons), arXiv:1604.06413 [math.NT], April 21 2016, http://arxiv.org/abs/1604.06413
 +
* Olivier Fouquet, The Equivariant Tamagawa Number Conjecture for modular motives with coefficients in Hecke algebras, arXiv:1604.06411 [math.NT], April 21 2016, http://arxiv.org/abs/1604.06411
 +
* Daigle, Jay, and Matthias Flach. “On the Local Tamagawa Number Conjecture for Tate Motives over Tamely Ramified Fields.” arXiv:1508.06031 [math], August 25, 2015. http://arxiv.org/abs/1508.06031.
 +
* Burns, David, Masato Kurihara, and Takamichi Sano. “Iwasawa Theory and Zeta Elements for $\mathbb{G}_m$.” arXiv:1506.07935 [math], June 25, 2015. http://arxiv.org/abs/1506.07935.
 +
 +
 +
[[분류:L-functions and L-values]]
 +
[[분류:migrate]]

2020년 11월 16일 (월) 06:22 판

introduction

  • The local Tamagawa number conjecure, first formulated by Fontaine and Perrin-Riou, expresses the compatibility of the (global) Tamagawa number conjecture on motivic L-functions with the functional equation.
  • The local conjecture was proven for Tate motives over finite unramified extensions $K/\mathbb{Q}_p$ by Bloch and Kato.


articles

  • Olivier Fouquet, $p$-adic properties of motivic fundamental lines (Kato's conjecture is (probably) false for (not so) trivial reasons), arXiv:1604.06413 [math.NT], April 21 2016, http://arxiv.org/abs/1604.06413
  • Olivier Fouquet, The Equivariant Tamagawa Number Conjecture for modular motives with coefficients in Hecke algebras, arXiv:1604.06411 [math.NT], April 21 2016, http://arxiv.org/abs/1604.06411
  • Daigle, Jay, and Matthias Flach. “On the Local Tamagawa Number Conjecture for Tate Motives over Tamely Ramified Fields.” arXiv:1508.06031 [math], August 25, 2015. http://arxiv.org/abs/1508.06031.
  • Burns, David, Masato Kurihara, and Takamichi Sano. “Iwasawa Theory and Zeta Elements for $\mathbb{G}_m$.” arXiv:1506.07935 [math], June 25, 2015. http://arxiv.org/abs/1506.07935.