"N=2 supersymmetric theory in d=4"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
imported>Pythagoras0 |
Pythagoras0 (토론 | 기여) |
||
(사용자 2명의 중간 판 21개는 보이지 않습니다) | |||
1번째 줄: | 1번째 줄: | ||
==introduction== | ==introduction== | ||
+ | * A very exiting development in the last 20 years has been the achievement of exact results in N= 2 gauge theories in four dimensions. | ||
+ | |||
+ | |||
+ | ==history== | ||
+ | * 1994, Seiberg-Witten exact solutions in 4D N= 2 gauge theories in the IR 사이버그와 위튼이 발견한 정확한 해의 발견 (4차원 게이지 장론의 최초의 정확한 해) | ||
+ | * 2002, Nekrasov, instanton partition function method, microscopic derivation 네크라소프의 인스탄톤 분배함수 방법 | ||
+ | * 2007, Pestun calculate the partition function of <math>N= 2</math> gauge theories on <math>S^4</math> using Localization techniques | ||
+ | * 2009, Gaioto 끈이론 대응성을 이용해서 대응성 예를 대폭 확장 | ||
+ | * 가이오토 결과의 중요한 후속성과 중 하나인 AGT, Alday-Gaiotto-Tachikawa conjecture | ||
+ | ** the partition functions on <math>S^4</math> of the <math>T_{g;n}</math> theories are equal to Liouville/Toda field theory correlators on the corresponding Riemann surface | ||
+ | |||
+ | |||
+ | ==memo== | ||
* the Lagrangian and the Seiberg-Witten solutions of SU(2) gauge theories | * the Lagrangian and the Seiberg-Witten solutions of SU(2) gauge theories | ||
* Argyres-Douglas CFTs and Gaiotto dualities | * Argyres-Douglas CFTs and Gaiotto dualities | ||
− | + | ||
− | |||
− | |||
− | |||
− | |||
==related items== | ==related items== | ||
* [[Seiberg-Witten theory]] | * [[Seiberg-Witten theory]] | ||
− | * [[Twisted N=1 and N=2 supersymmetry | + | * [[Twisted N=1 and N=2 supersymmetry in d=4]] |
* [[N = 1 supersymmetry algebra]] | * [[N = 1 supersymmetry algebra]] | ||
* [[BPS states and Wall-Crossing]] | * [[BPS states and Wall-Crossing]] | ||
* [[Elliptic Calogero-Moser model and AGT conjecture]] | * [[Elliptic Calogero-Moser model and AGT conjecture]] | ||
* [[Argyres-Douglas theory]] | * [[Argyres-Douglas theory]] | ||
+ | * [[Instanton partition function of N=2 supersymmetric gauge theory in d=4]] | ||
==encyclopedia== | ==encyclopedia== | ||
22번째 줄: | 32번째 줄: | ||
==expositions== | ==expositions== | ||
* Szabo, Richard J. “N=2 Gauge Theories, Instanton Moduli Spaces and Geometric Representation Theory.” arXiv:1507.00685 [hep-Th, Physics:math-Ph], July 2, 2015. http://arxiv.org/abs/1507.00685. | * Szabo, Richard J. “N=2 Gauge Theories, Instanton Moduli Spaces and Geometric Representation Theory.” arXiv:1507.00685 [hep-Th, Physics:math-Ph], July 2, 2015. http://arxiv.org/abs/1507.00685. | ||
+ | * Cecotti, Sergio, and Michele Del Zotto. “<math>Y</math> Systems, <math>Q</math> Systems, and 4D <math>\mathcal{N}=2</math> Supersymmetric QFT.” arXiv:1403.7613 [hep-Th], March 29, 2014. http://arxiv.org/abs/1403.7613. | ||
+ | * Gaiotto, Davide. “Families of N=2 Field Theories.” arXiv:1412.7118 [hep-Th], December 22, 2014. http://arxiv.org/abs/1412.7118. | ||
* Teschner, Jörg. ‘Exact Results on N=2 Supersymmetric Gauge Theories’. arXiv:1412.7145 [hep-Th], 22 December 2014. http://arxiv.org/abs/1412.7145. | * Teschner, Jörg. ‘Exact Results on N=2 Supersymmetric Gauge Theories’. arXiv:1412.7145 [hep-Th], 22 December 2014. http://arxiv.org/abs/1412.7145. | ||
* Tachikawa, Yuji. 2013. “N=2 Supersymmetric Dynamics for Dummies.” arXiv:1312.2684 [hep-Th] (December 10). http://arxiv.org/abs/1312.2684. | * Tachikawa, Yuji. 2013. “N=2 Supersymmetric Dynamics for Dummies.” arXiv:1312.2684 [hep-Th] (December 10). http://arxiv.org/abs/1312.2684. | ||
32번째 줄: | 44번째 줄: | ||
==articles== | ==articles== | ||
− | * | + | * Bingyi Chen, Dan Xie, Shing-Tung Yau, Stephen S. -T. Yau, Huaiqing Zuo, 4d N=2 SCFT and singularity theory Part II: Complete intersection, arXiv:1604.07843 [hep-th], April 26 2016, http://arxiv.org/abs/1604.07843 |
− | + | * Gaiotto, Davide. “N=2 Dualities.” Journal of High Energy Physics 2012, no. 8 (August 2012). doi:10.1007/JHEP08(2012)034. | |
− | * | + | * Pestun, Vasily. “Localization of Gauge Theory on a Four-Sphere and Supersymmetric Wilson Loops.” Communications in Mathematical Physics 313, no. 1 (July 2012): 71–129. doi:10.1007/s00220-012-1485-0. |
− | * | + | * Nekrasov, Nikita A. “Seiberg-Witten Prepotential From Instanton Counting.” arXiv:hep-th/0206161, June 18, 2002. http://arxiv.org/abs/hep-th/0206161. |
− | * | + | * Seiberg, N., and E. Witten. “Monopoles, Duality and Chiral Symmetry Breaking in N=2 Supersymmetric QCD.” Nuclear Physics B 431, no. 3 (December 1994): 484–550. doi:10.1016/0550-3213(94)90214-3. |
− | * | + | * Seiberg, N., and E. Witten. “Monopole Condensation, And Confinement In N=2 Supersymmetric Yang-Mills Theory.” Nuclear Physics B 426, no. 1 (September 1994): 19–52. doi:10.1016/0550-3213(94)90124-4. |
− | * | ||
− | |||
[[분류:개인노트]] | [[분류:개인노트]] | ||
− | [[ | + | [[분류:supersymmetric gauge theory]] |
+ | [[분류:migrate]] |
2020년 11월 16일 (월) 07:50 기준 최신판
introduction
- A very exiting development in the last 20 years has been the achievement of exact results in N= 2 gauge theories in four dimensions.
history
- 1994, Seiberg-Witten exact solutions in 4D N= 2 gauge theories in the IR 사이버그와 위튼이 발견한 정확한 해의 발견 (4차원 게이지 장론의 최초의 정확한 해)
- 2002, Nekrasov, instanton partition function method, microscopic derivation 네크라소프의 인스탄톤 분배함수 방법
- 2007, Pestun calculate the partition function of \(N= 2\) gauge theories on \(S^4\) using Localization techniques
- 2009, Gaioto 끈이론 대응성을 이용해서 대응성 예를 대폭 확장
- 가이오토 결과의 중요한 후속성과 중 하나인 AGT, Alday-Gaiotto-Tachikawa conjecture
- the partition functions on \(S^4\) of the \(T_{g;n}\) theories are equal to Liouville/Toda field theory correlators on the corresponding Riemann surface
memo
- the Lagrangian and the Seiberg-Witten solutions of SU(2) gauge theories
- Argyres-Douglas CFTs and Gaiotto dualities
- Seiberg-Witten theory
- Twisted N=1 and N=2 supersymmetry in d=4
- N = 1 supersymmetry algebra
- BPS states and Wall-Crossing
- Elliptic Calogero-Moser model and AGT conjecture
- Argyres-Douglas theory
- Instanton partition function of N=2 supersymmetric gauge theory in d=4
encyclopedia
expositions
- Szabo, Richard J. “N=2 Gauge Theories, Instanton Moduli Spaces and Geometric Representation Theory.” arXiv:1507.00685 [hep-Th, Physics:math-Ph], July 2, 2015. http://arxiv.org/abs/1507.00685.
- Cecotti, Sergio, and Michele Del Zotto. “\(Y\) Systems, \(Q\) Systems, and 4D \(\mathcal{N}=2\) Supersymmetric QFT.” arXiv:1403.7613 [hep-Th], March 29, 2014. http://arxiv.org/abs/1403.7613.
- Gaiotto, Davide. “Families of N=2 Field Theories.” arXiv:1412.7118 [hep-Th], December 22, 2014. http://arxiv.org/abs/1412.7118.
- Teschner, Jörg. ‘Exact Results on N=2 Supersymmetric Gauge Theories’. arXiv:1412.7145 [hep-Th], 22 December 2014. http://arxiv.org/abs/1412.7145.
- Tachikawa, Yuji. 2013. “N=2 Supersymmetric Dynamics for Dummies.” arXiv:1312.2684 [hep-Th] (December 10). http://arxiv.org/abs/1312.2684.
- Moore, Gregory W. 2012. “Four-Dimensional N=2 Field Theory and Physical Mathematics.” arXiv:1211.2331 [hep-Th, Physics:math-Ph] (November 10). http://arxiv.org/abs/1211.2331.
- Moore, Surface Defects and the BPS Spectrum of 4d N=2 Theories
- 2009. Recent progress in N=2 4d field theory
- Guica, Monica, and Andrew Strominger. 2007. “Cargèse Lectures on String Theory with Eight Supercharges.” Nuclear Physics B. Proceedings Supplement 171: 39–68. doi:10.1016/j.nuclphysbps.2007.06.007.
- D’Hoker, Eric, and D. H. Phong. 1999. “Lectures on Supersymmetric Yang-Mills Theory and Integrable Systems.” arXiv:hep-th/9912271 (December 29). http://arxiv.org/abs/hep-th/9912271.
- Lerche, W. 1997. “Introduction to Seiberg-Witten Theory and Its Stringy Origin.” Fortschritte Der Physik. Progress of Physics 45 (3-4): 293–340. doi:10.1002/prop.2190450304.
articles
- Bingyi Chen, Dan Xie, Shing-Tung Yau, Stephen S. -T. Yau, Huaiqing Zuo, 4d N=2 SCFT and singularity theory Part II: Complete intersection, arXiv:1604.07843 [hep-th], April 26 2016, http://arxiv.org/abs/1604.07843
- Gaiotto, Davide. “N=2 Dualities.” Journal of High Energy Physics 2012, no. 8 (August 2012). doi:10.1007/JHEP08(2012)034.
- Pestun, Vasily. “Localization of Gauge Theory on a Four-Sphere and Supersymmetric Wilson Loops.” Communications in Mathematical Physics 313, no. 1 (July 2012): 71–129. doi:10.1007/s00220-012-1485-0.
- Nekrasov, Nikita A. “Seiberg-Witten Prepotential From Instanton Counting.” arXiv:hep-th/0206161, June 18, 2002. http://arxiv.org/abs/hep-th/0206161.
- Seiberg, N., and E. Witten. “Monopoles, Duality and Chiral Symmetry Breaking in N=2 Supersymmetric QCD.” Nuclear Physics B 431, no. 3 (December 1994): 484–550. doi:10.1016/0550-3213(94)90214-3.
- Seiberg, N., and E. Witten. “Monopole Condensation, And Confinement In N=2 Supersymmetric Yang-Mills Theory.” Nuclear Physics B 426, no. 1 (September 1994): 19–52. doi:10.1016/0550-3213(94)90124-4.