"Torus knots"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
Pythagoras0 (토론 | 기여) |
Pythagoras0 (토론 | 기여) |
||
1번째 줄: | 1번째 줄: | ||
==introduction== | ==introduction== | ||
− | * torus knot : <math>K_{p,q}</math | + | * torus knot : <math>K_{p,q}</math> |
− | * The complement of a torus knot in the 3-sphere is a Seifert-fibered manifold | + | * The complement of a torus knot in the 3-sphere is a Seifert-fibered manifold |
* Seifert fibered space | * Seifert fibered space | ||
* S^1-bundle over an orbifold | * S^1-bundle over an orbifold | ||
27번째 줄: | 27번째 줄: | ||
==articles== | ==articles== | ||
− | * Kathrin Bringmann, Jeremy Lovejoy, Larry Rolen, On some special families of | + | * Kathrin Bringmann, Jeremy Lovejoy, Larry Rolen, On some special families of <math>q</math>-hypergeometric Maass forms, http://arxiv.org/abs/1603.01783v1 |
* Hikami, Kazuhiro, and Jeremy Lovejoy. “Torus Knots and Quantum Modular Forms.” arXiv:1409.6243 [math], September 22, 2014. http://arxiv.org/abs/1409.6243. | * Hikami, Kazuhiro, and Jeremy Lovejoy. “Torus Knots and Quantum Modular Forms.” arXiv:1409.6243 [math], September 22, 2014. http://arxiv.org/abs/1409.6243. | ||
* [http://dx.doi.org/10.1023/A:1022608131142 Proof of the volume conjecture for torus knots] | * [http://dx.doi.org/10.1023/A:1022608131142 Proof of the volume conjecture for torus knots] |
2020년 11월 16일 (월) 10:04 판
introduction
- torus knot \[K_{p,q}\]
- The complement of a torus knot in the 3-sphere is a Seifert-fibered manifold
- Seifert fibered space
- S^1-bundle over an orbifold
encyclopedia
articles
- Kathrin Bringmann, Jeremy Lovejoy, Larry Rolen, On some special families of \(q\)-hypergeometric Maass forms, http://arxiv.org/abs/1603.01783v1
- Hikami, Kazuhiro, and Jeremy Lovejoy. “Torus Knots and Quantum Modular Forms.” arXiv:1409.6243 [math], September 22, 2014. http://arxiv.org/abs/1409.6243.
- Proof of the volume conjecture for torus knots
- R. M. Kashaev and O. Tirkkonen, 2003
- Torus knot and minimal model
- Kazuhiro Hikami, a and Anatol N. Kirillov, 2003