"Torus knots"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
1번째 줄: 1번째 줄:
 
==introduction==
 
==introduction==
  
*  torus knot : <math>K_{p,q}</math><br>
+
*  torus knot : <math>K_{p,q}</math>
*  The complement of a torus knot in the 3-sphere is a Seifert-fibered manifold<br>
+
*  The complement of a torus knot in the 3-sphere is a Seifert-fibered manifold
 
* Seifert fibered space
 
* Seifert fibered space
 
* S^1-bundle over an orbifold
 
* S^1-bundle over an orbifold
27번째 줄: 27번째 줄:
  
 
==articles==
 
==articles==
* Kathrin Bringmann, Jeremy Lovejoy, Larry Rolen, On some special families of $q$-hypergeometric Maass forms, http://arxiv.org/abs/1603.01783v1
+
* Kathrin Bringmann, Jeremy Lovejoy, Larry Rolen, On some special families of <math>q</math>-hypergeometric Maass forms, http://arxiv.org/abs/1603.01783v1
 
* Hikami, Kazuhiro, and Jeremy Lovejoy. “Torus Knots and Quantum Modular Forms.” arXiv:1409.6243 [math], September 22, 2014. http://arxiv.org/abs/1409.6243.
 
* Hikami, Kazuhiro, and Jeremy Lovejoy. “Torus Knots and Quantum Modular Forms.” arXiv:1409.6243 [math], September 22, 2014. http://arxiv.org/abs/1409.6243.
 
* [http://dx.doi.org/10.1023/A:1022608131142 Proof of the volume conjecture for torus knots]
 
* [http://dx.doi.org/10.1023/A:1022608131142 Proof of the volume conjecture for torus knots]

2020년 11월 16일 (월) 10:04 판

introduction

  • torus knot \[K_{p,q}\]
  • The complement of a torus knot in the 3-sphere is a Seifert-fibered manifold
  • Seifert fibered space
  • S^1-bundle over an orbifold




related items



encyclopedia




articles