"Integrable perturbations of Ising model"의 두 판 사이의 차이
Pythagoras0 (토론 | 기여) |
|||
(사용자 3명의 중간 판 44개는 보이지 않습니다) | |||
1번째 줄: | 1번째 줄: | ||
− | + | ==introduction== | |
− | * energy perturbation '''[Kau49]''', '''[MTW77]''' | + | * energy perturbation '''[Kau49]''', '''[MTW77]''' |
** related to A1 | ** related to A1 | ||
** Ising field theory | ** Ising field theory | ||
− | * magnetic perturbation'''[Zam89]''' | + | * magnetic perturbation'''[Zam89]''' |
** related to E8 | ** related to E8 | ||
− | |||
− | + | ==Ising field theory== | |
− | + | * the continuum limit of the Ising model is made to look like a field theory only through the application of a certain transformation (Jordan-Winger) | |
− | |||
− | * the continuum limit of the Ising model is made to look like a field theory only through the application of a certain transformation (Jordan-Winger) | ||
** "kink" states (boundaries between regions of differing spin) = basic objects of the theory | ** "kink" states (boundaries between regions of differing spin) = basic objects of the theory | ||
** called quasiparticle | ** called quasiparticle | ||
− | * | + | * an entry of S-matrix |
+ | :<math> | ||
+ | S_{1,1}(\theta)=\frac{\tanh \left(\frac{1}{2} \left(\theta +\frac{i \pi }{15}\right)\right)\tanh \left(\frac{1}{2} \left(\theta +\frac{2i \pi }{5}\right)\right)\tanh \left(\frac{1}{2} \left(\theta +\frac{2i \pi }{3}\right)\right)}{\tanh \left(\frac{1}{2} \left(\theta -\frac{i \pi }{15}\right)\right)\tanh \left(\frac{1}{2} \left(\theta -\frac{2i \pi }{5}\right)\right)\tanh \left(\frac{1}{2} \left(\theta -\frac{2i \pi }{3}\right)\right)} | ||
+ | </math> | ||
+ | * it has poles with positive residue when <math>\theta=i y,\, 0<y<\pi</math> at <math>y=\pi/15,2\pi/5,2\pi/3</math> | ||
− | + | ||
+ | ==constant TBA equation== | ||
+ | ===Y-system=== | ||
+ | * [[Thermodynamic Bethe ansatz (TBA)]] | ||
+ | * Let <math>X=E_8</math> | ||
− | |||
− | |||
− | * | + | ===constant Y-system solution=== |
+ | * constant Y-system | ||
+ | :<math> | ||
+ | y_{i}^2=\prod _{j\in I} (1+y_{j})^{\mathcal{I}(X)_{ij}} | ||
+ | </math> | ||
+ | * solution | ||
+ | :<math> | ||
+ | \left\{2+2 \sqrt{2},5+4 \sqrt{2},11+8 \sqrt{2},16+12 \sqrt{2},42+30 \sqrt{2},56+40 \sqrt{2},152+108 \sqrt{2},543+384 \sqrt{2}\right\} | ||
+ | </math> | ||
− | |||
− | + | ===Klassen-Melzer solution=== | |
+ | * [[Purely Elastic Scattering Theories and Their Ultraviolet Limits by Klassen and Melzer]] | ||
+ | * Let <math>N=(N_{ij})</math> be the matrix given by | ||
+ | :<math> | ||
+ | N=\mathcal{I}(E_8)\cdot(\mathcal{C}(E_8))^{-1}= | ||
+ | \left( | ||
+ | \begin{array}{cccccccc} | ||
+ | 3 & 4 & 6 & 6 & 8 & 8 & 10 & 12 \\ | ||
+ | 4 & 7 & 8 & 10 & 12 & 14 & 16 & 20 \\ | ||
+ | 6 & 8 & 11 & 12 & 16 & 16 & 20 & 24 \\ | ||
+ | 6 & 10 & 12 & 15 & 18 & 20 & 24 & 30 \\ | ||
+ | 8 & 12 & 16 & 18 & 23 & 24 & 30 & 36 \\ | ||
+ | 8 & 14 & 16 & 20 & 24 & 27 & 32 & 40 \\ | ||
+ | 10 & 16 & 20 & 24 & 30 & 32 & 39 & 48 \\ | ||
+ | 12 & 20 & 24 & 30 & 36 & 40 & 48 & 59 \\ | ||
+ | \end{array} | ||
+ | \right) | ||
+ | </math> | ||
+ | * note that this is equivalent to | ||
+ | :<math> | ||
+ | N=2\mathcal{C}(E_8)^{-1}-I_8 | ||
+ | </math> | ||
+ | * The TBA equation is | ||
+ | :<math> | ||
+ | \epsilon_i=\sum_{j}N_{ij}\log (1+e^{-\epsilon_j}) | ||
+ | </math> | ||
+ | or | ||
− | < | + | :<math> |
+ | e^{\epsilon_i}=\prod_{j}(1+e^{-\epsilon_j})^{N_{ij}} | ||
+ | </math> | ||
+ | * we have the relationship <math>y_i=e^{\epsilon_i}</math> | ||
− | + | ==history== | |
− | |||
− | + | * Soon after Zamolodchikov’s first paper '''[Zam]''' appeared, | |
+ | * Fateev and Zamolodchikov conjectured in '''[FZ90]''' that | ||
+ | ** if you take a minimal model CFT constructed from a compact Lie algebra <math>\mathfrak{g}</math> via the coset construction and perturb it in a particular way, then you obtain the affine Toda field theory (ATFT) associated with <math>\mathfrak{g}</math>, which is an integrable field theory. | ||
+ | ** This was confirmed in '''[EY]''' and '''[HoM]'''. | ||
+ | * If you do this with <math>\mathfrak{g}=E_8</math>, you arrive at the conjectured integrable field theory investigated by Zamolodchikov and described in the previous paragraph. | ||
+ | * That is, if we take the <math>E_8</math> ATFT as a starting point, then the assumptions (Z1)–(Z4) become deductions. | ||
+ | * http://www.google.com/search?hl=en&tbs=tl:1&q= | ||
− | |||
− | + | ==related items== | |
− | + | * [[(3,4) Ising minimal model CFT]] | |
− | * | + | * [[Massive integrable perturbations of CFT and quasi-particles]] |
− | * | + | * [[Y-system]] |
− | * | + | * [[exact S-matrices in ATFT]] |
− | * | + | * [[Purely Elastic Scattering Theories and Their Ultraviolet Limits by Klassen and Melzer]] |
− | + | * [[Dilute A model]] | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | + | ==computational resource== | |
− | * | + | * https://docs.google.com/file/d/0B8XXo8Tve1cxSWIwb1l2YkoyNDg/edit |
− | |||
− | |||
− | |||
− | |||
− | * | + | ==expositions== |
− | * Affleck, Ian. 2010. “Solid-state physics: Golden ratio seen in a magnet”. <em>Nature</em> 464 (7287) (3월 18): 362-363. doi:[http://dx.doi.org/10.1038/464362a 10.1038/464362a].< | + | * [[Did a 1-dimensional magnet detect a 248-dimensional Lie algebra?]] |
+ | * Affleck, Ian. 2010. “Solid-state physics: Golden ratio seen in a magnet”. <em>Nature</em> 464 (7287) (3월 18): 362-363. doi:[http://dx.doi.org/10.1038/464362a 10.1038/464362a]. | ||
+ | * Jihye Seo, [http://isites.harvard.edu/fs/docs/icb.topic572189.files/Jihye_Seo_Ising_model_in_field.pdf Solving 2D Magnetic Ising Model at <math>T=T_c</math> Using Scattering Theory] 2009 | ||
+ | * Delfino, Gesualdo. 2003. “Integrable Field Theory and Critical Phenomena. The Ising Model in a Magnetic Field.” arXiv:hep-th/0312119 (December 11). doi:10.1088/0305-4470/37/14/R01. http://arxiv.org/abs/hep-th/0312119. | ||
+ | * Dorey, Patrick. 1992. “Hidden Geometrical Structures in Integrable Models.” arXiv:hep-th/9212143 (December 23). http://arxiv.org/abs/hep-th/9212143. | ||
+ | |||
− | + | ==articles== | |
+ | * Koca, Mehmet, and Nazife Ozdes Koca. “Radii of the E8 Gosset Circles as the Mass Excitations in the Ising Model.” arXiv:1204.4567 [hep-Th, Physics:math-Ph], April 20, 2012. http://arxiv.org/abs/1204.4567. | ||
+ | * Kostant, Bertram. “Experimental Evidence for the Occurrence of E8 in Nature and the Radii of the Gosset Circles.” arXiv:1003.0046 [math-Ph], February 28, 2010. http://arxiv.org/abs/1003.0046. | ||
+ | * Coldea, R., D. A. Tennant, E. M. Wheeler, E. Wawrzynska, D. Prabhakaran, M. Telling, K. Habicht, P. Smeibidl, and K. Kiefer. 2010. Quantum Criticality in an Ising Chain: Experimental Evidence for Emergent E8 Symmetry. Science 327, no. 5962 (January 8): 177 -180. doi:[http://dx.doi.org/10.1126/science.1180085 10.1126/science.1180085]. | ||
+ | * Alessandro Nigro [http://dx.doi.org/10.1088/1742-5468/2008/01/P01017 On the integrable structure of the Ising model] J. Stat. Mech. (2008) P01017 | ||
+ | * G. Delfinoa and G. Mussardo [http://dx.doi.org/10.1016/S0550-3213%2898%2900063-7 Non-integrable aspects of the multi-frequency sine-Gordon model], 1998 | ||
+ | * G. Delfinoa and G. Mussardo [http://dx.doi.org/10.1016/0550-3213%2895%2900464-4 The spin-spin correlation function in the two-dimensional Ising model in a magnetic field at T = Tc], 1995 | ||
+ | * Bazhanov, V. V., B. Nienhuis, and S. O. Warnaar. ‘Lattice Ising Model in a Field: E8 Scattering Theory’. Physics Letters B 322, no. 3 (17 February 1994): 198–206. doi:[http://dx.doi.org/10.1016/0370-2693%2894%2991107-X 10.1016/0370-2693(94)91107-X].* Braden, H. W., E. Corrigan, P. E. Dorey, and R. Sasaki. 1990. “Aspects of Perturbed Conformal Field Theory, Affine Toda Field Theory and Exact <math>S</math>-matrices.” In Differential Geometric Methods in Theoretical Physics (Davis, CA, 1988), 245:169–182. NATO Adv. Sci. Inst. Ser. B Phys. New York: Plenum. http://www.ams.org/mathscinet-getitem?mr=1169481. | ||
+ | * '''[EY]'''T. Eguchi and S.-K. Yang, Deformations of conformal field theories and soliton equations, Phys. Lett. B 224 (1989), 373-8 B | ||
+ | * '''[HoM]'''T.J. Hollowood and P.Mansfield, Rational conformal theories at, and away from criticality as Toda field theories, Phys. Lett. B226 (1989) 73-79 | ||
+ | * '''[Zam]'''Zamolodchikov, A. B. Integrals of Motion and S-Matrix of the (scaled) T = Tc Ising Model with Magnetic Field. International Journal of Modern Physics A 04, no. 16 (10 October 1989): 4235–48. doi:10.1142/S0217751X8900176X. | ||
+ | * '''[FZ90]'''V. A. Fateev and A. B. Zamolodchikov. Conformal field theory and purely elastic S-matrices. Int. J. Mod. Phys., A5 (6): 1025-1048 | ||
+ | * '''[Zam89]'''A.B. Zamolodchikov, Integrable field theory from conformal field theory, Adv. Stud. Pure Math. 19, 641-674 (1989) | ||
+ | * Barry M. McCoy, Craig A. Tracy, Tai Tsun Wu [http://dx.doi.org/10.1103/PhysRevLett.46.757 Ising Field Theory: Quadratic Difference Equations for the n-Point Green's Functions on the Lattice], Phys. Rev. Lett. 46, 757–760 (1981) | ||
+ | * '''[MTW77]'''Barry M. McCoy, Craig A. Tracy, Tai Tsun Wu [http://dx.doi.org/10.1103/PhysRevLett.38.793 Two-Dimensional Ising Model as an Exactly Solvable Relativistic Quantum Field Theory: Explicit Formulas for n-Point Functions], Phys. Rev. Lett. 38, 793–796 (1977) | ||
+ | * '''[Kau49]''' Bruria Kaufman [http://dx.doi.org/10.1103/PhysRev.76.1232 Statistics. II. Partition Function Evaluated by Spinor Analysis], Phys. Rev. 76, 1232–1243 (1949) Crystal | ||
− | + | ==question and answers(Math Overflow)== | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
* http://mathoverflow.net/questions/32315/has-the-lie-group-e8-really-been-detected-experimentally | * http://mathoverflow.net/questions/32315/has-the-lie-group-e8-really-been-detected-experimentally | ||
* http://mathoverflow.net/questions/32432/does-the-quantum-subgroup-of-quantum-su-2-called-e-8-have-anything-at-all-to-do-w | * http://mathoverflow.net/questions/32432/does-the-quantum-subgroup-of-quantum-su-2-called-e-8-have-anything-at-all-to-do-w | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | + | [[분류:integrable systems]] | |
− | + | [[분류:math and physics]] | |
− | + | [[분류:migrate]] | |
− |
2020년 11월 16일 (월) 10:06 기준 최신판
introduction
- energy perturbation [Kau49], [MTW77]
- related to A1
- Ising field theory
- magnetic perturbation[Zam89]
- related to E8
Ising field theory
- the continuum limit of the Ising model is made to look like a field theory only through the application of a certain transformation (Jordan-Winger)
- "kink" states (boundaries between regions of differing spin) = basic objects of the theory
- called quasiparticle
- an entry of S-matrix
\[ S_{1,1}(\theta)=\frac{\tanh \left(\frac{1}{2} \left(\theta +\frac{i \pi }{15}\right)\right)\tanh \left(\frac{1}{2} \left(\theta +\frac{2i \pi }{5}\right)\right)\tanh \left(\frac{1}{2} \left(\theta +\frac{2i \pi }{3}\right)\right)}{\tanh \left(\frac{1}{2} \left(\theta -\frac{i \pi }{15}\right)\right)\tanh \left(\frac{1}{2} \left(\theta -\frac{2i \pi }{5}\right)\right)\tanh \left(\frac{1}{2} \left(\theta -\frac{2i \pi }{3}\right)\right)} \]
- it has poles with positive residue when \(\theta=i y,\, 0<y<\pi\) at \(y=\pi/15,2\pi/5,2\pi/3\)
constant TBA equation
Y-system
- Thermodynamic Bethe ansatz (TBA)
- Let \(X=E_8\)
constant Y-system solution
- constant Y-system
\[ y_{i}^2=\prod _{j\in I} (1+y_{j})^{\mathcal{I}(X)_{ij}} \]
- solution
\[ \left\{2+2 \sqrt{2},5+4 \sqrt{2},11+8 \sqrt{2},16+12 \sqrt{2},42+30 \sqrt{2},56+40 \sqrt{2},152+108 \sqrt{2},543+384 \sqrt{2}\right\} \]
Klassen-Melzer solution
- Purely Elastic Scattering Theories and Their Ultraviolet Limits by Klassen and Melzer
- Let \(N=(N_{ij})\) be the matrix given by
\[ N=\mathcal{I}(E_8)\cdot(\mathcal{C}(E_8))^{-1}= \left( \begin{array}{cccccccc} 3 & 4 & 6 & 6 & 8 & 8 & 10 & 12 \\ 4 & 7 & 8 & 10 & 12 & 14 & 16 & 20 \\ 6 & 8 & 11 & 12 & 16 & 16 & 20 & 24 \\ 6 & 10 & 12 & 15 & 18 & 20 & 24 & 30 \\ 8 & 12 & 16 & 18 & 23 & 24 & 30 & 36 \\ 8 & 14 & 16 & 20 & 24 & 27 & 32 & 40 \\ 10 & 16 & 20 & 24 & 30 & 32 & 39 & 48 \\ 12 & 20 & 24 & 30 & 36 & 40 & 48 & 59 \\ \end{array} \right) \]
- note that this is equivalent to
\[ N=2\mathcal{C}(E_8)^{-1}-I_8 \]
- The TBA equation is
\[ \epsilon_i=\sum_{j}N_{ij}\log (1+e^{-\epsilon_j}) \] or
\[ e^{\epsilon_i}=\prod_{j}(1+e^{-\epsilon_j})^{N_{ij}} \]
- we have the relationship \(y_i=e^{\epsilon_i}\)
history
- Soon after Zamolodchikov’s first paper [Zam] appeared,
- Fateev and Zamolodchikov conjectured in [FZ90] that
- if you take a minimal model CFT constructed from a compact Lie algebra \(\mathfrak{g}\) via the coset construction and perturb it in a particular way, then you obtain the affine Toda field theory (ATFT) associated with \(\mathfrak{g}\), which is an integrable field theory.
- This was confirmed in [EY] and [HoM].
- If you do this with \(\mathfrak{g}=E_8\), you arrive at the conjectured integrable field theory investigated by Zamolodchikov and described in the previous paragraph.
- That is, if we take the \(E_8\) ATFT as a starting point, then the assumptions (Z1)–(Z4) become deductions.
- http://www.google.com/search?hl=en&tbs=tl:1&q=
- (3,4) Ising minimal model CFT
- Massive integrable perturbations of CFT and quasi-particles
- Y-system
- exact S-matrices in ATFT
- Purely Elastic Scattering Theories and Their Ultraviolet Limits by Klassen and Melzer
- Dilute A model
computational resource
expositions
- Did a 1-dimensional magnet detect a 248-dimensional Lie algebra?
- Affleck, Ian. 2010. “Solid-state physics: Golden ratio seen in a magnet”. Nature 464 (7287) (3월 18): 362-363. doi:10.1038/464362a.
- Jihye Seo, Solving 2D Magnetic Ising Model at \(T=T_c\) Using Scattering Theory 2009
- Delfino, Gesualdo. 2003. “Integrable Field Theory and Critical Phenomena. The Ising Model in a Magnetic Field.” arXiv:hep-th/0312119 (December 11). doi:10.1088/0305-4470/37/14/R01. http://arxiv.org/abs/hep-th/0312119.
- Dorey, Patrick. 1992. “Hidden Geometrical Structures in Integrable Models.” arXiv:hep-th/9212143 (December 23). http://arxiv.org/abs/hep-th/9212143.
articles
- Koca, Mehmet, and Nazife Ozdes Koca. “Radii of the E8 Gosset Circles as the Mass Excitations in the Ising Model.” arXiv:1204.4567 [hep-Th, Physics:math-Ph], April 20, 2012. http://arxiv.org/abs/1204.4567.
- Kostant, Bertram. “Experimental Evidence for the Occurrence of E8 in Nature and the Radii of the Gosset Circles.” arXiv:1003.0046 [math-Ph], February 28, 2010. http://arxiv.org/abs/1003.0046.
- Coldea, R., D. A. Tennant, E. M. Wheeler, E. Wawrzynska, D. Prabhakaran, M. Telling, K. Habicht, P. Smeibidl, and K. Kiefer. 2010. Quantum Criticality in an Ising Chain: Experimental Evidence for Emergent E8 Symmetry. Science 327, no. 5962 (January 8): 177 -180. doi:10.1126/science.1180085.
- Alessandro Nigro On the integrable structure of the Ising model J. Stat. Mech. (2008) P01017
- G. Delfinoa and G. Mussardo Non-integrable aspects of the multi-frequency sine-Gordon model, 1998
- G. Delfinoa and G. Mussardo The spin-spin correlation function in the two-dimensional Ising model in a magnetic field at T = Tc, 1995
- Bazhanov, V. V., B. Nienhuis, and S. O. Warnaar. ‘Lattice Ising Model in a Field: E8 Scattering Theory’. Physics Letters B 322, no. 3 (17 February 1994): 198–206. doi:10.1016/0370-2693(94)91107-X.* Braden, H. W., E. Corrigan, P. E. Dorey, and R. Sasaki. 1990. “Aspects of Perturbed Conformal Field Theory, Affine Toda Field Theory and Exact \(S\)-matrices.” In Differential Geometric Methods in Theoretical Physics (Davis, CA, 1988), 245:169–182. NATO Adv. Sci. Inst. Ser. B Phys. New York: Plenum. http://www.ams.org/mathscinet-getitem?mr=1169481.
- [EY]T. Eguchi and S.-K. Yang, Deformations of conformal field theories and soliton equations, Phys. Lett. B 224 (1989), 373-8 B
- [HoM]T.J. Hollowood and P.Mansfield, Rational conformal theories at, and away from criticality as Toda field theories, Phys. Lett. B226 (1989) 73-79
- [Zam]Zamolodchikov, A. B. Integrals of Motion and S-Matrix of the (scaled) T = Tc Ising Model with Magnetic Field. International Journal of Modern Physics A 04, no. 16 (10 October 1989): 4235–48. doi:10.1142/S0217751X8900176X.
- [FZ90]V. A. Fateev and A. B. Zamolodchikov. Conformal field theory and purely elastic S-matrices. Int. J. Mod. Phys., A5 (6): 1025-1048
- [Zam89]A.B. Zamolodchikov, Integrable field theory from conformal field theory, Adv. Stud. Pure Math. 19, 641-674 (1989)
- Barry M. McCoy, Craig A. Tracy, Tai Tsun Wu Ising Field Theory: Quadratic Difference Equations for the n-Point Green's Functions on the Lattice, Phys. Rev. Lett. 46, 757–760 (1981)
- [MTW77]Barry M. McCoy, Craig A. Tracy, Tai Tsun Wu Two-Dimensional Ising Model as an Exactly Solvable Relativistic Quantum Field Theory: Explicit Formulas for n-Point Functions, Phys. Rev. Lett. 38, 793–796 (1977)
- [Kau49] Bruria Kaufman Statistics. II. Partition Function Evaluated by Spinor Analysis, Phys. Rev. 76, 1232–1243 (1949) Crystal