"Equivariant Tamagawa number conjecture (ETNC)"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
imported>Pythagoras0 |
Pythagoras0 (토론 | 기여) |
||
(같은 사용자의 중간 판 하나는 보이지 않습니다) | |||
1번째 줄: | 1번째 줄: | ||
==introduction== | ==introduction== | ||
* The local Tamagawa number conjecure, first formulated by Fontaine and Perrin-Riou, expresses the compatibility of the (global) Tamagawa number conjecture on motivic L-functions with the functional equation. | * The local Tamagawa number conjecure, first formulated by Fontaine and Perrin-Riou, expresses the compatibility of the (global) Tamagawa number conjecture on motivic L-functions with the functional equation. | ||
− | * The local conjecture was proven for Tate motives over finite unramified extensions | + | * The local conjecture was proven for Tate motives over finite unramified extensions <math>K/\mathbb{Q}_p</math> by Bloch and Kato. |
==articles== | ==articles== | ||
− | * Olivier Fouquet, | + | * Olivier Fouquet, <math>p</math>-adic properties of motivic fundamental lines (Kato's conjecture is (probably) false for (not so) trivial reasons), arXiv:1604.06413 [math.NT], April 21 2016, http://arxiv.org/abs/1604.06413 |
* Olivier Fouquet, The Equivariant Tamagawa Number Conjecture for modular motives with coefficients in Hecke algebras, arXiv:1604.06411 [math.NT], April 21 2016, http://arxiv.org/abs/1604.06411 | * Olivier Fouquet, The Equivariant Tamagawa Number Conjecture for modular motives with coefficients in Hecke algebras, arXiv:1604.06411 [math.NT], April 21 2016, http://arxiv.org/abs/1604.06411 | ||
* Daigle, Jay, and Matthias Flach. “On the Local Tamagawa Number Conjecture for Tate Motives over Tamely Ramified Fields.” arXiv:1508.06031 [math], August 25, 2015. http://arxiv.org/abs/1508.06031. | * Daigle, Jay, and Matthias Flach. “On the Local Tamagawa Number Conjecture for Tate Motives over Tamely Ramified Fields.” arXiv:1508.06031 [math], August 25, 2015. http://arxiv.org/abs/1508.06031. | ||
− | * Burns, David, Masato Kurihara, and Takamichi Sano. “Iwasawa Theory and Zeta Elements for | + | * Burns, David, Masato Kurihara, and Takamichi Sano. “Iwasawa Theory and Zeta Elements for <math>\mathbb{G}_m</math>.” arXiv:1506.07935 [math], June 25, 2015. http://arxiv.org/abs/1506.07935. |
[[분류:L-functions and L-values]] | [[분류:L-functions and L-values]] | ||
[[분류:migrate]] | [[분류:migrate]] |
2020년 11월 16일 (월) 10:10 기준 최신판
introduction
- The local Tamagawa number conjecure, first formulated by Fontaine and Perrin-Riou, expresses the compatibility of the (global) Tamagawa number conjecture on motivic L-functions with the functional equation.
- The local conjecture was proven for Tate motives over finite unramified extensions \(K/\mathbb{Q}_p\) by Bloch and Kato.
articles
- Olivier Fouquet, \(p\)-adic properties of motivic fundamental lines (Kato's conjecture is (probably) false for (not so) trivial reasons), arXiv:1604.06413 [math.NT], April 21 2016, http://arxiv.org/abs/1604.06413
- Olivier Fouquet, The Equivariant Tamagawa Number Conjecture for modular motives with coefficients in Hecke algebras, arXiv:1604.06411 [math.NT], April 21 2016, http://arxiv.org/abs/1604.06411
- Daigle, Jay, and Matthias Flach. “On the Local Tamagawa Number Conjecture for Tate Motives over Tamely Ramified Fields.” arXiv:1508.06031 [math], August 25, 2015. http://arxiv.org/abs/1508.06031.
- Burns, David, Masato Kurihara, and Takamichi Sano. “Iwasawa Theory and Zeta Elements for \(\mathbb{G}_m\).” arXiv:1506.07935 [math], June 25, 2015. http://arxiv.org/abs/1506.07935.