"Quaternion algebras and quadratic forms"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
(→‎메타데이터: 새 문단)
31번째 줄: 31번째 줄:
 
[[분류:math]]
 
[[분류:math]]
 
[[분류:migrate]]
 
[[분류:migrate]]
 +
 +
== 메타데이터 ==
 +
 +
===위키데이터===
 +
* ID :  [https://www.wikidata.org/wiki/Q2835967 Q2835967]

2020년 12월 27일 (일) 18:41 판

introduction

  • let \(F\) be a field
  • consider a quaternion algebra defined by \(F[i,j]/(i^2=a,j^2=b,ij=-ji)\)
  • we denote it as

\[\left(\frac{a,b}{F}\right)\]

  • 4 dimensional algebra over \(F\) with basis \(1,i,j,k\) and multiplication rules \(i^2=a\), \(j^2=b\), \(ij=-ji=k\).
  • it is an example of a central simple algebra (see Brauer group)
  • it is either a division algebra or isomorphic to the matrix algebra of \(2\times 2\) matrices over \(F\): the latter case is termed split


quaternion algebra as a quadratic space

  • let us consider the algebra \(A=\left(\frac{a,b}{F}\right)\)
  • we regard it as a quadratic space associated with the quadratic form \((1,-a,-b,ab)\)


Hilbert symbol

  • In this case the algebra represents an element of order 2 in the Brauer group of \(F\), which is identified with -1 if it is a division algebra and +1 if it is isomorphic to the algebra of 2 by 2 matrices.


related items

expositions

메타데이터

위키데이터