"타원 모듈라 j-함수의 singular moduli"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
 
(사용자 2명의 중간 판 25개는 보이지 않습니다)
1번째 줄: 1번째 줄:
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 수학노트 원문주소</h5>
+
==개요==
  
* [[타원 모듈라 j-함수의 singular moduli]]
+
* [[타원 모듈라 j-함수 (elliptic modular function, j-invariant)|타원 모듈라 j-함수]]quadratic imaginary number 에서의 값들
 
 
 
 
 
 
 
 
 
 
<h5>개요</h5>
 
 
 
* quadratic imaginary number 에서의 값들
 
 
* 중요한 결과로 Gross-Zagier 공식이 있음
 
* 중요한 결과로 Gross-Zagier 공식이 있음
  
 
+
 
 
 
 
 
 
<h5>예</h5>
 
 
 
<math> j(\sqrt{-1})=1728=12^3</math>
 
 
 
<math>j(\frac {-1+\sqrt{-3}}{2})=0</math>
 
 
 
<math>j(\frac {-1+\sqrt{-7}}{2})=-3375=-15^3</math>
 
 
 
<math> j(\sqrt{-2})=8000=20^3</math>
 
 
 
<math>j(\frac {-1+\sqrt{-11}}{2})=-32768=-32^3</math>
 
 
 
<math>j(\frac {-1+\sqrt{-19}}{2})=-884736=-96^3</math>
 
 
 
<math>j(\frac {-1+\sqrt{-43}} {2})=-884736000=-960^3</math>
 
 
 
<math>j(\frac {-1+\sqrt{-67}} {2})=-147197952000=-5280^3</math>
 
 
 
<math> j(\frac {-1+\sqrt{-163}} {2})=-262537412640768000=-640320^3</math>
 
 
 
<math> j(\sqrt{-3})=54000=2(30)^3</math>
 
 
 
<math> j(\sqrt{-4})=287496=(66)^3</math>
 
 
 
<math> j(\sqrt{-7})=16581375=(255)^3</math>
 
  
<math>j(\frac {-1+3\sqrt{-3}}{2})=-12288000=-3(160)^3</math>
+
  
<math> j(\sqrt{-5})=632000+282880 \sqrt{5}=(50+26\sqrt{5})^3</math>
+
==예==
 +
\begin{array}{c|c|c|c}
 +
\tau & j(\tau) & \sqrt[3]{j(\tau )} & \text{factorization} \\
 +
\hline
 +
i & 1728 & 12 & 2^6\cdot 3^3 \\
 +
\frac{1}{2} \left(-1+i \sqrt{3}\right) & 0 & 0 & 0 \\
 +
\frac{1}{2} \left(-1+i \sqrt{7}\right) & -3375 & -15 & -3^3 5^3 \\
 +
i \sqrt{2} & 8000 & 20 & 2^6\cdot 5^3 \\
 +
\frac{1}{2} \left(-1+i \sqrt{11}\right) & -32768 & -32 & -2^{15} \\
 +
\frac{1}{2} \left(-1+i \sqrt{19}\right) & -884736 & -96 & -2^{15} 3^3 \\
 +
\frac{1}{2} \left(-1+i \sqrt{43}\right) & -884736000 & -960 & -2^{18} 3^3 5^3 \\
 +
\frac{1}{2} \left(-1+i \sqrt{67}\right) & -147197952000 & -5280 & -2^{15} 3^3 5^3 11^3 \\
 +
\frac{1}{2} \left(-1+i \sqrt{163}\right) & -262537412640768000 & -640320 & -2^{18} 3^3 5^3 23^3 29^3 \\
 +
i \sqrt{3} & 54000 & 30 \sqrt[3]{2} & 2^4\cdot 3^3\cdot 5^3 \\
 +
2 i & 287496 & 66 & 2^3\cdot 3^3\cdot 11^3 \\
 +
i \sqrt{7} & 16581375 & 255 & 3^3\cdot 5^3\cdot 17^3 \\
 +
\frac{1}{2} \left(-1+3 i \sqrt{3}\right) & -12288000 & 160 \sqrt[3]{-3} & -2^{15} 3^1 5^3 \\
 +
\sqrt{-5} & 632000+282880 \sqrt{5} & 50+26\sqrt{5} & \\
 +
\frac {-1+\sqrt{-5}}{2} & 632000-282880 \sqrt{5} & 50-26\sqrt{5} &
 +
\end{array}
  
<math>j(\frac {-1+\sqrt{-5}}{2})=632000-282880 \sqrt{5}=(50-26\sqrt{5})^3</math>
 
  
 
 
  
 
+
  
<h5>Gross-Zagier 공식</h5>
+
  
<math>J(d_1,d_2)=\prod_{}(j(\alpha)-j(\beta)^{\frac{4}{w_1 w_2}}</math>
+
==Gross-Zagier 공식==
  
 
+
* <math>d_1, d_ 2</math>가 서로 다른 두 복소이차수체 <math>K_1, K_2</math>의 판별식이라 하자.
 +
* <math>J(d_ 1,d_ 2)</math>를 <math>\prod_{}\left(j(\alpha_1)-j(\alpha_2)\right)^{\frac{4}{w_1 w_2}}</math> 로 정의하자. 여기서 <math>\alpha_1, \alpha_2</math> 는 각각 <math>K_1</math>, <math>K_2</math> 의 ideal class의 representatives
 +
;정리 [Gross-Zagier]
 +
:<math>J (d_ 1,d_ 2)^2=\prod_{\substack{x,n,n'\in \mathbb{Z}, \\ x^2+4nn'=d_ 1d_ 2, \\ n,n'>0}}n^{\epsilon(n')}</math>
  
 
 
  
<h5>역사</h5>
+
==역사==
  
 
 
  
 
* http://www.google.com/search?hl=en&tbs=tl:1&q=
 
* http://www.google.com/search?hl=en&tbs=tl:1&q=
* [[수학사연표 (역사)|수학사연표]]
+
* [[수학사 연표]]
 
 
 
 
 
 
 
 
 
 
<h5>메모</h5>
 
 
 
 
 
 
 
* Math Overflow http://mathoverflow.net/search?q=
 
  
 
+
  
 
+
  
<h5>관련된 항목들</h5>
+
==메모==
 +
* Morton, Patrick. “Genus Theory and the Factorization of Class Equations over <math>\mathbb{F}_p</math>.” arXiv:1409.0691 [math], September 2, 2014. http://arxiv.org/abs/1409.0691.
 +
* [http://terrytao.wordpress.com/2007/05/03/distinguished-lecture-series-ii-shou-wu-zhang-%E2%80%9Cgross-zagier-formula-and-birch-and-swinnerton-dyer-conjecture-%E2%80%9D/ http://terrytao.wordpress.com/2007/05/03/distinguished-lecture-series-ii-shou-wu-zhang-“gross-zagier-formula-and-birch-and-swinnerton-dyer-conjecture-”/]
 +
* asymptotics http://mathoverflow.net/questions/48544/bounding-the-modular-discriminant-of-an-elliptic-curve-in-the-j-invariant
  
 
+
==관련된 항목들==
  
 
+
* [[complex multiplication]]
 +
* [[정수계수 이변수 이차형식(binary integral quadratic forms)]]
  
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">수학용어번역</h5>
 
  
*  단어사전<br>
 
** http://translate.google.com/#en|ko|
 
** http://ko.wiktionary.org/wiki/
 
* 발음사전 http://www.forvo.com/search/
 
* [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]<br>
 
** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr=
 
* [http://www.kss.or.kr/pds/sec/dic.aspx 한국통계학회 통계학 용어 온라인 대조표]
 
* [http://www.nktech.net/science/term/term_l.jsp?l_mode=cate&s_code_cd=MA 남·북한수학용어비교]
 
* [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 대한수학회 수학용어한글화 게시판]
 
  
 
+
==수학용어번역==
 +
* {{학술용어집|url=singular}}
 +
** 특이
 +
* {{학술용어집|url=moduli}}
  
 
+
  
<h5>매스매티카 파일 및 계산 리소스</h5>
+
==매스매티카 파일 및 계산 리소스==
  
 
* https://docs.google.com/file/d/0B8XXo8Tve1cxU3MtUWtoTS1kaW8/edit
 
* https://docs.google.com/file/d/0B8XXo8Tve1cxU3MtUWtoTS1kaW8/edit
* http://www.wolframalpha.com/input/?i=
 
* http://functions.wolfram.com/
 
* [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions]
 
* [http://people.math.sfu.ca/%7Ecbm/aands/toc.htm Abramowitz and Stegun Handbook of mathematical functions]
 
* [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]
 
* [http://numbers.computation.free.fr/Constants/constants.html Numbers, constants and computation]
 
* [https://docs.google.com/open?id=0B8XXo8Tve1cxMWI0NzNjYWUtNmIwZi00YzhkLTkzNzQtMDMwYmVmYmIxNmIw 매스매티카 파일 목록]
 
 
 
 
 
 
 
 
<h5>사전 형태의 자료</h5>
 
 
* http://ko.wikipedia.org/wiki/
 
* http://en.wikipedia.org/wiki/
 
* [http://eom.springer.de/default.htm The Online Encyclopaedia of Mathematics]
 
* [http://dlmf.nist.gov NIST Digital Library of Mathematical Functions]
 
* [http://eqworld.ipmnet.ru/ The World of Mathematical Equations]
 
 
 
 
 
 
 
 
<h5>리뷰논문, 에세이, 강의노트</h5>
 
 
 
 
 
 
 
  
 
 
  
<h5>관련논문</h5>
 
  
* http://www.jstor.org/action/doBasicSearch?Query=
 
* http://www.ams.org/mathscinet
 
* http://dx.doi.org/
 
  
 
+
==리뷰, 에세이, 강의노트==
 +
* Duke and Jenkins, [http://www.maths.bris.ac.uk/~mamjd/bb/notes/duke_jenkins_li_notes.pdf Notes on singular moduli and modular forms]
  
 
+
==관련논문==
 +
* Ehlen, Stephan. ‘Singular Moduli of Higher Level and Special Cycles’. arXiv:1505.02711 [math], 11 May 2015. http://arxiv.org/abs/1505.02711.
 +
* Bilu, Yuri, Florian Luca, and Amalia Pizarro-Madariaga. “Rational Products of Singular Moduli.” arXiv:1410.1806 [math], October 7, 2014. http://arxiv.org/abs/1410.1806.
 +
* Lauter, Kristin, and Bianca Viray. “On Singular Moduli for Arbitrary Discriminants.” International Mathematics Research Notices, December 1, 2014. doi:10.1093/imrn/rnu223.
 +
* Howard, Benjamin, and Tonghai Yang. 2012. “Singular Moduli Refined.” arXiv:1202.6410 (February 28). http://arxiv.org/abs/1202.6410.
 +
* Dorman, David R. “Special values of the elliptic modular function and factorization formulae.” Journal für die reine und angewandte Mathematik 383 (1988): 207–20.
 +
* [http://gdz.sub.uni-goettingen.de/no_cache/dms/load/img/?IDDOC=262662 On singular moduli.] Gross, B.H.; Zagier, Don B, J. Rcinc Angew. Math. 355 (1984), 191-220
  
<h5>관련도서</h5>
+
* Birkoff  a sourcebook in classical analysis
 +
* [http://dx.doi.org/10.1142/9789812774415_0016 SL(2,Z) invariant spaces spanned by modular units]
 +
* examples http://w3.countnumber.de/addons/Publikationen/text/mex.pdf
 +
* [http://projecteuclid.org/DPubS?service=UI&version=1.0&verb=Display&handle=euclid.dmj/1077232812 Explicit elliptic units, I]
 +
** Farshid Hajir and Fernando Rodriguez Villegas
 +
** Source: Duke Math. J. Volume 90, Number 3 (1997), 495-521.
 +
* Gross, B.H.; Zagier, Don B [http://gdz.sub.uni-goettingen.de/no_cache/dms/load/img/?IDDOC=262662 On singular moduli.]
 +
* Ken Ono [http://www.google.com/url?sa=t&source=web&ct=res&cd=1&url=http%3A%2F%2Fwww.claymath.org%2Fpublications%2FGauss_Dirichlet%2Fono.pdf&ei=e9LGSvXXCYbOsQPMjc2iBQ&usg=AFQjCNHBel_I_9pU-OeXVumQYsCBmouH8A&sig2=syQ4RY4MrY81U0nQyh8BGA Singular moduli generating functions for modular curves and surfaces].
 +
[http://www.springerlink.com/content/h335012525j22t17/ Singular moduli, modular polynomials, and the index of the closure of Z[j(]
 +
** D. Dorman, Math. Ann. 283 (1989), pages 177-191.
 +
* [http://gdz.sub.uni-goettingen.de/dms/load/img/?PPN=PPN243919689_0383&DMDID=dmdlog9 Special values of the elliptic modular function and factorization formulae]
 +
** D. Dorman,  J. reine angew. Math. 383 (1988), pages 207-220
  
*  도서내검색<br>
+
[[분류:정수론]]
** http://books.google.com/books?q=
 
** http://book.daum.net/search/contentSearch.do?query=
 

2020년 12월 27일 (일) 23:52 기준 최신판

개요



\begin{array}{c|c|c|c} \tau & j(\tau) & \sqrt[3]{j(\tau )} & \text{factorization} \\ \hline i & 1728 & 12 & 2^6\cdot 3^3 \\ \frac{1}{2} \left(-1+i \sqrt{3}\right) & 0 & 0 & 0 \\ \frac{1}{2} \left(-1+i \sqrt{7}\right) & -3375 & -15 & -3^3 5^3 \\ i \sqrt{2} & 8000 & 20 & 2^6\cdot 5^3 \\ \frac{1}{2} \left(-1+i \sqrt{11}\right) & -32768 & -32 & -2^{15} \\ \frac{1}{2} \left(-1+i \sqrt{19}\right) & -884736 & -96 & -2^{15} 3^3 \\ \frac{1}{2} \left(-1+i \sqrt{43}\right) & -884736000 & -960 & -2^{18} 3^3 5^3 \\ \frac{1}{2} \left(-1+i \sqrt{67}\right) & -147197952000 & -5280 & -2^{15} 3^3 5^3 11^3 \\ \frac{1}{2} \left(-1+i \sqrt{163}\right) & -262537412640768000 & -640320 & -2^{18} 3^3 5^3 23^3 29^3 \\ i \sqrt{3} & 54000 & 30 \sqrt[3]{2} & 2^4\cdot 3^3\cdot 5^3 \\ 2 i & 287496 & 66 & 2^3\cdot 3^3\cdot 11^3 \\ i \sqrt{7} & 16581375 & 255 & 3^3\cdot 5^3\cdot 17^3 \\ \frac{1}{2} \left(-1+3 i \sqrt{3}\right) & -12288000 & 160 \sqrt[3]{-3} & -2^{15} 3^1 5^3 \\ \sqrt{-5} & 632000+282880 \sqrt{5} & 50+26\sqrt{5} & \\ \frac {-1+\sqrt{-5}}{2} & 632000-282880 \sqrt{5} & 50-26\sqrt{5} & \end{array}




Gross-Zagier 공식

  • \(d_1, d_ 2\)가 서로 다른 두 복소이차수체 \(K_1, K_2\)의 판별식이라 하자.
  • \(J(d_ 1,d_ 2)\)를 \(\prod_{}\left(j(\alpha_1)-j(\alpha_2)\right)^{\frac{4}{w_1 w_2}}\) 로 정의하자. 여기서 \(\alpha_1, \alpha_2\) 는 각각 \(K_1\), \(K_2\) 의 ideal class의 representatives
정리 [Gross-Zagier]

\[J (d_ 1,d_ 2)^2=\prod_{\substack{x,n,n'\in \mathbb{Z}, \\ x^2+4nn'=d_ 1d_ 2, \\ n,n'>0}}n^{\epsilon(n')}\]


역사



메모

관련된 항목들


수학용어번역

  • singular - 대한수학회 수학용어집
    • 특이
  • moduli - 대한수학회 수학용어집


매스매티카 파일 및 계산 리소스



리뷰, 에세이, 강의노트

관련논문

  • Ehlen, Stephan. ‘Singular Moduli of Higher Level and Special Cycles’. arXiv:1505.02711 [math], 11 May 2015. http://arxiv.org/abs/1505.02711.
  • Bilu, Yuri, Florian Luca, and Amalia Pizarro-Madariaga. “Rational Products of Singular Moduli.” arXiv:1410.1806 [math], October 7, 2014. http://arxiv.org/abs/1410.1806.
  • Lauter, Kristin, and Bianca Viray. “On Singular Moduli for Arbitrary Discriminants.” International Mathematics Research Notices, December 1, 2014. doi:10.1093/imrn/rnu223.
  • Howard, Benjamin, and Tonghai Yang. 2012. “Singular Moduli Refined.” arXiv:1202.6410 (February 28). http://arxiv.org/abs/1202.6410.
  • Dorman, David R. “Special values of the elliptic modular function and factorization formulae.” Journal für die reine und angewandte Mathematik 383 (1988): 207–20.
  • On singular moduli. Gross, B.H.; Zagier, Don B, J. Rcinc Angew. Math. 355 (1984), 191-220
Singular moduli, modular polynomials, and the index of the closure of Z[j(