"Critical phenomena"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
Pythagoras0 (토론 | 기여) |
Pythagoras0 (토론 | 기여) (→메타데이터: 새 문단) |
||
58번째 줄: | 58번째 줄: | ||
[[분류:math and physics]] | [[분류:math and physics]] | ||
[[분류:migrate]] | [[분류:migrate]] | ||
+ | |||
+ | == 메타데이터 == | ||
+ | |||
+ | ===위키데이터=== | ||
+ | * ID : [https://www.wikidata.org/wiki/Q900634 Q900634] |
2020년 12월 28일 (월) 00:03 판
introduction
- In this sense, the thermodynamic functions seem to display scale invariance around the critical point (for systems that have a critical point!), with the scaling variable t=(1-T/Tc).
- Note that the logarithm y=log x obeys y(ax)=y(x) + log a.
- It is scale invariant with exponent 0 (and a scale-dependent shift.)
- This is related to the famous formula\(\lim_{p\to 0}\frac{x^p-1}{p} = \log x\) which shows that logs are a special case of power law functions with power 0.
- basics of magnetism
examples
- liquid-vapour critical point
- paramagnetic-ferromagnetic transition
- multicomponent fluids
- alloys
- superfulids
- superconductors
- polymers
- fully developed turbulence
- quark-gluon plasma
- early universe
E.A. Guggenheim, The Journal of Chemical Physics 13, 253-261 (1945).
Tromp, R. M., W. Theis, and N. C. Bartelt. 1996. Real-Time Microscopy of Two-Dimensional Critical Fluctuations: Disordering of the Si(113)-( 3 x 1) Reconstruction. Physical Review Letters 77, no. 12: 2522. doi:10.1103/PhysRevLett.77.2522.
expositions
- Scaling, universality, and renormalization: Three pillars of modern critical phenomena ftp://162.105.205.230/pub/Books/%CE%EF%C0%ED/%CE%EF%C0%ED%D1%A7%CA%B7/History_of_Modern_Physics/Statistical%20Physics%20and%20Fluids/Scaling,%20universality,%20and%20renormalization.pdf
메타데이터
위키데이터
- ID : Q900634