"Q- Pfaff-Saalschütz 항등식"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
(피타고라스님이 이 페이지의 이름을 q- Pfaff-Saalschütz 항등식로 바꾸었습니다.)
 
(사용자 2명의 중간 판 15개는 보이지 않습니다)
1번째 줄: 1번째 줄:
 +
==개요==
  
 +
* '''[GR2004]''' (1.7.2) q-analogue of Pfaff-Saalschutz's summation formula:<math>\, _3\phi _2\left(a,b,q^{-k};c,\frac{a b q^{1-k}}{c};q,q\right)=\frac{\left(\frac{c}{a};q\right)_k \left(\frac{c}{b};q\right)_k}{(c;q)_k \left(\frac{c}{a b};q\right)_k}</math> or:<math>\sum_{n=0}^{\infty}\frac{q^n (a;q)_n (b;q)_n \left(q^{-k};q\right)_n}{(q;q)_n (c;q)_n \left(\frac{a b q^{1-k}}{c};q\right)_n}=\frac{\left(\frac{c}{a};q\right)_k \left(\frac{c}{b};q\right)_k}{(c;q)_k \left(\frac{c}{a b};q\right)_k}</math>
 +
 +
 +
 +
 +
 +
==메모==
 +
 +
 +
 +
* Math Overflow http://mathoverflow.net/search?q=
 +
 +
 +
 +
 +
 +
==관련된 항목들==
 +
 +
 +
 +
 +
 +
==사전 형태의 자료==
 +
 +
* http://ko.wikipedia.org/wiki/
 +
* http://en.wikipedia.org/wiki/
 +
* http://mathworld.wolfram.com/q-SaalschuetzSum.html
 +
* [http://eom.springer.de/default.htm The Online Encyclopaedia of Mathematics]
 +
 +
 +
 +
 +
 +
 +
 +
[[분류:q-급수]]

2020년 12월 28일 (월) 01:57 기준 최신판

개요

  • [GR2004] (1.7.2) q-analogue of Pfaff-Saalschutz's summation formula\[\, _3\phi _2\left(a,b,q^{-k};c,\frac{a b q^{1-k}}{c};q,q\right)=\frac{\left(\frac{c}{a};q\right)_k \left(\frac{c}{b};q\right)_k}{(c;q)_k \left(\frac{c}{a b};q\right)_k}\] or\[\sum_{n=0}^{\infty}\frac{q^n (a;q)_n (b;q)_n \left(q^{-k};q\right)_n}{(q;q)_n (c;q)_n \left(\frac{a b q^{1-k}}{c};q\right)_n}=\frac{\left(\frac{c}{a};q\right)_k \left(\frac{c}{b};q\right)_k}{(c;q)_k \left(\frac{c}{a b};q\right)_k}\]



메모



관련된 항목들

사전 형태의 자료