"라마누잔-셀베르그 연분수"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
(피타고라스님이 이 페이지의 위치를 <a href="/pages/3004578">로저스-라마누잔 항등식</a>페이지로 이동하였습니다.)
 
(사용자 2명의 중간 판 12개는 보이지 않습니다)
1번째 줄: 1번째 줄:
 +
==개요==
  
 +
* [[Ramanujan-Göllnitz-Gordon 연분수]]
 +
* '''[Duke2005] '''(9.1):<math>u(\tau)={\sqrt{2}q^{1/8} \over 1+ } {q \over 1+q+} {q^2 \over 1+q^2+} {q^3 \over 1+q^3} \cdots=\sqrt{2}q^{1/8}\prod_{n=1}^{\infty}(1+q^{n})^{(-1)^{n}}=\sqrt{2}q^{1/8}\frac{(-q^{2};q^{2})_{\infty}} {(-q;q^{2})_{\infty}}</math>
 +
:<math>v(\tau)={q^{1/2} \over 1+q + } {q \over 1+q^2+} {q^2 \over 1+q^3}  \cdots=q^{1/2}\prod_{n=1}^{\infty}(1-q^{n})^{(\frac{8}{n})}=q^{1/2}\frac{(q^{1};q^{8})_{\infty}(q^{7};q^{8})_{\infty}}{(q^{3};q^{8})_{\infty}(q^{5};q^{8})_{\infty}}</math>
 +
 +
 +
 +
*  셀베르그
 +
:<math>S_1(q)=\sqrt{2}q^{1/8}\frac{(-q^{2};q^{2})_{\infty}} {(-q;q^{2})_{\infty}}=u(\tau)=\sqrt{2}\frac{\eta(\tau)\eta^{2}(4\tau)}{\eta^{3}(2\tau)}</math>
 +
:<math>S_2(q)=q^{1/8}\frac{(-q^{2};q^{2})_{\infty}} {(q;q^{2})_{\infty}}=q^{1/8}\frac{(-q^{2};q^{2})_{\infty}(q^2;q^{2})_{\infty}}{(q;q^{2})_{\infty}(q^2;q^{2})_{\infty}} =\frac{\eta(4\tau)}{\eta(\tau)}</math> S1 , S2은 '''[Chan2009]''' 의 표기
 +
* [[q-series 의 공식 모음]]
 +
 +
 +
 +
 +
 +
 +
 +
==메모==
 +
 +
 +
 +
* Math Overflow http://mathoverflow.net/search?q=
 +
 +
 +
 +
 +
 +
==관련된 항목들==
 +
 +
 +
 +
 +
 +
==관련논문==
 +
 +
* [http://dx.doi.org/0.1090/S0002-9939-09-09835-9 From a Ramanujan-Selberg continued fraction to a Jacobian identity]
 +
**  Hei-Chi ChanJournal: Proc. Amer. Math. Soc. 137 (2009), 2849-2856.
 +
* [http://dx.doi.org/10.1155/IJMMS/2006/54901 Modular relations and explicit values of Ramanujan-Selberg continued fractions]
 +
**  Nayandeep Deka Baruah and Nipen Saikia, 2006
 +
* [http://www.ams.org/proc/2002-130-01/S0002-9939-01-06183-4/home.html Explicit evaluations of a Ramanujan-Selberg continued fraction]
 +
**  Liang-Cheng Zhang, 2002
 +
 +
[[분류:q-급수]]
 +
[[분류:연분수]]

2020년 12월 28일 (월) 02:16 기준 최신판

개요

  • Ramanujan-Göllnitz-Gordon 연분수
  • [Duke2005] (9.1)\[u(\tau)={\sqrt{2}q^{1/8} \over 1+ } {q \over 1+q+} {q^2 \over 1+q^2+} {q^3 \over 1+q^3} \cdots=\sqrt{2}q^{1/8}\prod_{n=1}^{\infty}(1+q^{n})^{(-1)^{n}}=\sqrt{2}q^{1/8}\frac{(-q^{2};q^{2})_{\infty}} {(-q;q^{2})_{\infty}}\]

\[v(\tau)={q^{1/2} \over 1+q + } {q \over 1+q^2+} {q^2 \over 1+q^3} \cdots=q^{1/2}\prod_{n=1}^{\infty}(1-q^{n})^{(\frac{8}{n})}=q^{1/2}\frac{(q^{1};q^{8})_{\infty}(q^{7};q^{8})_{\infty}}{(q^{3};q^{8})_{\infty}(q^{5};q^{8})_{\infty}}\]


  • 셀베르그

\[S_1(q)=\sqrt{2}q^{1/8}\frac{(-q^{2};q^{2})_{\infty}} {(-q;q^{2})_{\infty}}=u(\tau)=\sqrt{2}\frac{\eta(\tau)\eta^{2}(4\tau)}{\eta^{3}(2\tau)}\] \[S_2(q)=q^{1/8}\frac{(-q^{2};q^{2})_{\infty}} {(q;q^{2})_{\infty}}=q^{1/8}\frac{(-q^{2};q^{2})_{\infty}(q^2;q^{2})_{\infty}}{(q;q^{2})_{\infty}(q^2;q^{2})_{\infty}} =\frac{\eta(4\tau)}{\eta(\tau)}\] S1 , S2은 [Chan2009] 의 표기




메모



관련된 항목들

관련논문