"정팔면체와 모듈라 연분수"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
(피타고라스님이 이 페이지를 개설하였습니다.)
 
 
(사용자 2명의 중간 판 12개는 보이지 않습니다)
1번째 줄: 1번째 줄:
 +
==이 항목의 수학노트 원문주소==
  
 +
* [[정팔면체와 모듈라 연분수]]
 +
 +
 +
 +
 +
 +
==개요==
 +
 +
* '''[Duke2005] '''(9.1) :<math>u(\tau)={\sqrt{2}q^{1/8} \over 1+ } {q \over 1+q+} {q^2 \over 1+q^2+} {q^3 \over 1+q^3} \cdots=\sqrt{2}q^{1/8}\prod_{n=1}^{\infty}(1+q^{n})^{(-1)^{n}}=\sqrt{2}q^{1/8}\frac{(-q^{2};q^{2})_{\infty}} {(-q;q^{2})_{\infty}}</math>
 +
:<math>v(\tau)={q^{1/2} \over 1+q + } {q \over 1+q^2+} {q^2 \over 1+q^3} \cdots=q^{1/2}\prod_{n=1}^{\infty}(1-q^{n})^{(\frac{8}{n})}=q^{1/2}\frac{(q^{1};q^{8})_{\infty}(q^{7};q^{8})_{\infty}}{(q^{3};q^{8})_{\infty}(q^{5};q^{8})_{\infty}}</math>
 +
*  두번째 함수는 [[Ramanujan-Göllnitz-Gordon 연분수]] 이다
 +
* [[라마누잔-셀베르그 연분수]]는 <math>u(\tau)</math> 의 또다른 연분수 전개를 준다
 +
 +
 +
 +
 +
 +
 +
 +
<math>u(\tau)={\sqrt{2}q^{1/8} \over 1+ } {q \over 1+q+} {q^2 \over 1+q^2} {q^3 \over 1+q^3} \cdots=\sqrt{2}q^{1/8}\prod_{n=1}^{\infty}(1+q^{n})^{(-1)^{n}}=\sqrt{2}q^{1/8}\frac{(-q^{2};q^{2})_{\infty}} {(-q;q^{2})_{\infty}}=\sqrt{2}q^{1/8}\frac{(q^{1};q^{4})_{\infty}(q^{3};q^{4})_{\infty}}{(q^{2};q^{4})_{\infty}(q^{2};q^{4})_{\infty}}</math>
 +
 +
(증명)
 +
 +
[[q-series 의 공식 모음]]
 +
 +
<math>(-q^2;q^{2})_{n}=\frac{(q^4;q^4)_{n}}{(q^2;q^2)_{n}}=\frac{1}{(q^2;q^4)_{n}}</math>
 +
 +
<math>(-q;q^{2})_{n}=\frac{(-q;q)_{n}}{(-q^{2};q^{2})_{n}}=\frac{(q^{2};q^{2})_{n}(q^{2};q^{2})_{n}}{(q^{4};q^{4})_{n}(q;q)_{n}}=\frac{(q^{2};q^{4})_{n}}{(q^{1};q^{4})_{n}(q^{3};q^{4})_{n}}</math>
 +
 +
<math>(-q^2;q^{2})_{\infty}=\frac{(q^4;q^4)_{\infty}}{(q^2;q^2)_{\infty}}=\frac{1}{(q^2;q^4)_{\infty}}</math>
 +
 +
<math>(-q;q^{2})_{\infty}=\frac{(q^{2};q^{2})_{\infty}(q^{2};q^{2})_{\infty}}{(q^{4};q^{4})_{\infty}(q;q)_{\infty}}=\frac{(q^{2};q^{4})_{\infty}}{(q^{1};q^{4})_{\infty}(q^{3};q^{4})_{\infty}}</math> ■
 +
 +
 +
 +
 +
 +
 +
 +
==Ramanujan-Göllnitz-Gordon continued fraction==
 +
 +
 +
 +
* [[Ramanujan-Göllnitz-Gordon 연분수]]:<math>1/v(\tau) \sim 1+q+{q^{2} \over 1+q^{3} + } {q^{4} \over 1+q^{5}+} {q^{6} \over \cdots}=\frac{(q^{3};q^{8})_{\infty}(q^{4};q^{8})_{\infty}(q^{5};q^{8})_{\infty}}{(q^{1};q^{8})_{\infty}(q^{4};q^{8})_{\infty}(q^{7};q^{8})_{\infty}}=\frac{(q^{3};q^{8})_{\infty}(q^{5};q^{8})_{\infty}}{(q^{1};q^{8})_{\infty}(q^{7};q^{8})_{\infty}}</math>
 +
 +
 +
 +
 +
 +
 +
 +
==eta quotient==
 +
 +
<math>u(\tau)=\sqrt{2}q^{1/8}\frac{(-q^{2};q^{2})_{\infty}} {(-q;q^{2})_{\infty}}=\sqrt{2}\frac{\eta(\tau)\eta^{2}(4\tau)}{\eta^{3}(2\tau)}</math>
 +
 +
(proof)
 +
 +
<math>\frac{(-q^{2};q^{2})_{\infty}} {(-q;q^{2})_{\infty}}=\frac{(q^4;q^4)_{\infty}}{(q^2;q^2)_{\infty}}\frac{(q^{4};q^{4})_{\infty}(q;q)_{\infty}}{(q^{2};q^{2})_{\infty}(q^{2};q^{2})_{\infty}}</math>■
 +
 +
 +
 +
 +
 +
==메모==
 +
 +
* Ramanujan, second notebook p229
 +
* Math Overflow http://mathoverflow.net/search?q=
 +
 +
 +
 +
 +
 +
==관련된 항목들==
 +
 +
 +
 +
 +
 +
==수학용어번역==
 +
 +
*  단어사전
 +
** http://translate.google.com/#en|ko|
 +
** http://ko.wiktionary.org/wiki/
 +
* 발음사전 http://www.forvo.com/search/
 +
* [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]
 +
** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr=
 +
* [http://www.kss.or.kr/pds/sec/dic.aspx 한국통계학회 통계학 용어 온라인 대조표]
 +
* [http://cgi.postech.ac.kr/cgi-bin/cgiwrap/sand/terms/terms.cgi 한국물리학회 물리학 용어집 검색기]
 +
* [http://www.nktech.net/science/term/term_l.jsp?l_mode=cate&s_code_cd=MA 남·북한수학용어비교]
 +
* [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 대한수학회 수학용어한글화 게시판]
 +
 +
 +
 +
 +
 +
==매스매티카 파일 및 계산 리소스==
 +
 +
 +
* http://www.wolframalpha.com/input/?i=
 +
* http://functions.wolfram.com/
 +
* [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions]
 +
* [http://people.math.sfu.ca/%7Ecbm/aands/toc.htm Abramowitz and Stegun Handbook of mathematical functions]
 +
* [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]
 +
* [http://numbers.computation.free.fr/Constants/constants.html Numbers, constants and computation]
 +
* [https://docs.google.com/open?id=0B8XXo8Tve1cxMWI0NzNjYWUtNmIwZi00YzhkLTkzNzQtMDMwYmVmYmIxNmIw 매스매티카 파일 목록]
 +
 +
 +
 +
 +
 +
==사전 형태의 자료==
 +
 +
* http://ko.wikipedia.org/wiki/
 +
* http://en.wikipedia.org/wiki/
 +
* [http://eom.springer.de/default.htm The Online Encyclopaedia of Mathematics]
 +
* [http://dlmf.nist.gov NIST Digital Library of Mathematical Functions]
 +
* [http://eqworld.ipmnet.ru/ The World of Mathematical Equations]
 +
 +
 +
 +
 +
 +
==리뷰논문, 에세이, 강의노트==
 +
 +
* '''[Duke2005]'''W. Duke, [http://www.ams.org/bull/2005-42-02/S0273-0979-05-01047-5/home.html#References Continued fractions and modular functions] , Bull. Amer. Math. Soc. 42 (2005), 137-162
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
[[분류:연분수]]

2020년 12월 28일 (월) 03:55 기준 최신판

이 항목의 수학노트 원문주소



개요

  • [Duke2005] (9.1) \[u(\tau)={\sqrt{2}q^{1/8} \over 1+ } {q \over 1+q+} {q^2 \over 1+q^2+} {q^3 \over 1+q^3} \cdots=\sqrt{2}q^{1/8}\prod_{n=1}^{\infty}(1+q^{n})^{(-1)^{n}}=\sqrt{2}q^{1/8}\frac{(-q^{2};q^{2})_{\infty}} {(-q;q^{2})_{\infty}}\]

\[v(\tau)={q^{1/2} \over 1+q + } {q \over 1+q^2+} {q^2 \over 1+q^3} \cdots=q^{1/2}\prod_{n=1}^{\infty}(1-q^{n})^{(\frac{8}{n})}=q^{1/2}\frac{(q^{1};q^{8})_{\infty}(q^{7};q^{8})_{\infty}}{(q^{3};q^{8})_{\infty}(q^{5};q^{8})_{\infty}}\]




\(u(\tau)={\sqrt{2}q^{1/8} \over 1+ } {q \over 1+q+} {q^2 \over 1+q^2} {q^3 \over 1+q^3} \cdots=\sqrt{2}q^{1/8}\prod_{n=1}^{\infty}(1+q^{n})^{(-1)^{n}}=\sqrt{2}q^{1/8}\frac{(-q^{2};q^{2})_{\infty}} {(-q;q^{2})_{\infty}}=\sqrt{2}q^{1/8}\frac{(q^{1};q^{4})_{\infty}(q^{3};q^{4})_{\infty}}{(q^{2};q^{4})_{\infty}(q^{2};q^{4})_{\infty}}\)

(증명)

q-series 의 공식 모음

\((-q^2;q^{2})_{n}=\frac{(q^4;q^4)_{n}}{(q^2;q^2)_{n}}=\frac{1}{(q^2;q^4)_{n}}\)

\((-q;q^{2})_{n}=\frac{(-q;q)_{n}}{(-q^{2};q^{2})_{n}}=\frac{(q^{2};q^{2})_{n}(q^{2};q^{2})_{n}}{(q^{4};q^{4})_{n}(q;q)_{n}}=\frac{(q^{2};q^{4})_{n}}{(q^{1};q^{4})_{n}(q^{3};q^{4})_{n}}\)

\((-q^2;q^{2})_{\infty}=\frac{(q^4;q^4)_{\infty}}{(q^2;q^2)_{\infty}}=\frac{1}{(q^2;q^4)_{\infty}}\)

\((-q;q^{2})_{\infty}=\frac{(q^{2};q^{2})_{\infty}(q^{2};q^{2})_{\infty}}{(q^{4};q^{4})_{\infty}(q;q)_{\infty}}=\frac{(q^{2};q^{4})_{\infty}}{(q^{1};q^{4})_{\infty}(q^{3};q^{4})_{\infty}}\) ■




Ramanujan-Göllnitz-Gordon continued fraction

  • Ramanujan-Göllnitz-Gordon 연분수\[1/v(\tau) \sim 1+q+{q^{2} \over 1+q^{3} + } {q^{4} \over 1+q^{5}+} {q^{6} \over \cdots}=\frac{(q^{3};q^{8})_{\infty}(q^{4};q^{8})_{\infty}(q^{5};q^{8})_{\infty}}{(q^{1};q^{8})_{\infty}(q^{4};q^{8})_{\infty}(q^{7};q^{8})_{\infty}}=\frac{(q^{3};q^{8})_{\infty}(q^{5};q^{8})_{\infty}}{(q^{1};q^{8})_{\infty}(q^{7};q^{8})_{\infty}}\]




eta quotient

\(u(\tau)=\sqrt{2}q^{1/8}\frac{(-q^{2};q^{2})_{\infty}} {(-q;q^{2})_{\infty}}=\sqrt{2}\frac{\eta(\tau)\eta^{2}(4\tau)}{\eta^{3}(2\tau)}\)

(proof)

\(\frac{(-q^{2};q^{2})_{\infty}} {(-q;q^{2})_{\infty}}=\frac{(q^4;q^4)_{\infty}}{(q^2;q^2)_{\infty}}\frac{(q^{4};q^{4})_{\infty}(q;q)_{\infty}}{(q^{2};q^{2})_{\infty}(q^{2};q^{2})_{\infty}}\)■



메모



관련된 항목들

수학용어번역



매스매티카 파일 및 계산 리소스



사전 형태의 자료



리뷰논문, 에세이, 강의노트