"초타원 시그마 함수(hyperelliptic sigma functions)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
(피타고라스님이 이 페이지의 이름을 초타원 시그마 함수(hyperelliptic sigma functions)로 바꾸었습니다.)
 
(사용자 2명의 중간 판 19개는 보이지 않습니다)
1번째 줄: 1번째 줄:
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 수학노트 원문주소</h5>
 
  
 
+
==메모==
  
 
+
* [http://www.icms.org.uk/workshops/sigma The higher-genus sigma function and applications]
  
<h5>개요</h5>
+
  
 
+
  
 
+
==관련된 항목들==
  
<h5>재미있는 사실</h5>
+
* [[바이어슈트라스 시그마 함수]]
 +
* [[소모스 수열(Somos sequence)]]
  
 
+
  
* Math Overflow http://mathoverflow.net/search?q=
+
==리뷰논문과 에세이==
* 네이버 지식인 http://kin.search.naver.com/search.naver?where=kin_qna&query=
 
  
 
+
* England, [http://www.cs.bath.ac.uk/~me350/Conferences/Burnhandout.pdf The Weierstrass Theory For Elliptic Functions Including The Generalisation To Higher Genus]
 +
* Buchstaber, Victor, Victor Enolskii, and Dmitri Leykin. “Hyperelliptic Kleinian Functions and Applications.” arXiv:solv-int/9603005, March 16, 1996. http://arxiv.org/abs/solv-int/9603005.
  
 
+
 
 
<h5>역사</h5>
 
 
 
 
 
 
 
* http://www.google.com/search?hl=en&tbs=tl:1&q=
 
* [[수학사연표 (역사)|수학사연표]]
 
 
 
 
 
 
 
 
 
 
 
<h5>메모</h5>
 
 
 
 
 
 
 
 
 
 
 
<h5>관련된 항목들</h5>
 
 
 
 
 
 
 
 
 
 
 
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">수학용어번역</h5>
 
 
 
* 단어사전 http://www.google.com/dictionary?langpair=en|ko&q=
 
* 발음사전 http://www.forvo.com/search/
 
* [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]<br>
 
** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr=hy
 
* [http://www.nktech.net/science/term/term_l.jsp?l_mode=cate&s_code_cd=MA 남·북한수학용어비교]
 
* [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 대한수학회 수학용어한글화 게시판]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
<h5>사전 형태의 자료</h5>
 
 
 
* http://ko.wikipedia.org/wiki/
 
* http://en.wikipedia.org/wiki/
 
* [http://eom.springer.de/default.htm The Online Encyclopaedia of Mathematics]
 
* [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions]
 
* [http://eqworld.ipmnet.ru/ The World of Mathematical Equations]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
<h5>expositions</h5>
 
 
 
*
 
 
 
 
 
 
 
 
 
 
 
<h5>관련논문</h5>
 
  
 +
==관련논문==
 +
* Bernatska, Julia, and Dmitry Leykin. “On Degenerate Sigma-Functions of Genus Two.” arXiv:1509.01490 [math-Ph], September 4, 2015. http://arxiv.org/abs/1509.01490.
 +
*  Kodama, Yuji, Shigeki Matsutani, and Emma Previato. 2010. “Quasi-periodic and periodic solutions of the Toda lattice via the hyperelliptic sigma function.” <em>1008.0509</em> (August 3). http://arxiv.org/abs/1008.0509 .
 
* Eilbeck, J C, V Z Enolski, and J Gibbons. 2010. Sigma, tau and Abelian functions of algebraic curves. Journal of Physics A: Mathematical and Theoretical 43, no. 45 (11): 455216. doi:[http://dx.doi.org/10.1088/1751-8113/43/45/455216 10.1088/1751-8113/43/45/455216].
 
* Eilbeck, J C, V Z Enolski, and J Gibbons. 2010. Sigma, tau and Abelian functions of algebraic curves. Journal of Physics A: Mathematical and Theoretical 43, no. 45 (11): 455216. doi:[http://dx.doi.org/10.1088/1751-8113/43/45/455216 10.1088/1751-8113/43/45/455216].
 +
* Eilbeck, J. C., V. Z. Enolski, S. Matsutani, Y. Ônishi, and E. Previato. “Abelian Functions for Trigonal Curves of Genus Three.” International Mathematics Research Notices, July 8, 2010. doi:10.1093/imrn/rnm140. http://arxiv.org/abs/math/0610019
 +
* Braden, Harry W, Victor Z Enolskii, and Andrew N. W Hone. 2005. “Bilinear recurrences and addition formulae for hyperelliptic sigma functions.” <em>math/0501162</em> (January 11). http://arxiv.org/abs/math/0501162 .
 +
* Matsutani, Shigeki. “Elliptic and Hyperelliptic Solutions of Discrete Painlevé I and Its Extensions to Higher Order Difference Equations.” Physics Letters A 300, no. 2–3 (July 29, 2002): 233–42. doi:[http://dx.doi.org/10.1016/S0375-9601%2802%2900784-3 16/S0375-9601(02)00784-3]
 +
* Ônishi, Yoshihiro. “Determinant Expressions for Hyperelliptic Functions (with an Appendix by Shigeki Matsutani).” arXiv:math/0105189, May 23, 2001. http://arxiv.org/abs/math/0105189.
 
* Matsutani, Shigeki. 2000. Hyperelliptic Solutions of KdV and KP equations: Reevaluation of Baker's Study on Hyperelliptic Sigma Functions. nlin/0007001 (July 1). doi:doi:[http://dx.doi.org/10.1088/0305-4470/34/22/312 10.1088/0305-4470/34/22/312]. http://arxiv.org/abs/nlin/0007001.
 
* Matsutani, Shigeki. 2000. Hyperelliptic Solutions of KdV and KP equations: Reevaluation of Baker's Study on Hyperelliptic Sigma Functions. nlin/0007001 (July 1). doi:doi:[http://dx.doi.org/10.1088/0305-4470/34/22/312 10.1088/0305-4470/34/22/312]. http://arxiv.org/abs/nlin/0007001.
* http://www.jstor.org/action/doBasicSearch?Query=
 
* http://www.ams.org/mathscinet
 
* http://dx.doi.org/
 
 
 
 
 
 
 
 
<h5>관련도서</h5>
 
 
*  도서내검색<br>
 
** http://books.google.com/books?q=
 
** http://book.daum.net/search/contentSearch.do?query=
 
 
 
 
 
 
 
  
<h5>링크</h5>
 
  
* [http://www.ams.org/news/math-in-the-media/mathdigest-index Summaries of Media Coverage of Math]
+
[[분류:특수함수]]
*  구글 블로그 검색<br>
 
** http://blogsearch.google.com/blogsearch?q=
 

2020년 12월 28일 (월) 02:58 기준 최신판

메모



관련된 항목들


리뷰논문과 에세이


관련논문

  • Bernatska, Julia, and Dmitry Leykin. “On Degenerate Sigma-Functions of Genus Two.” arXiv:1509.01490 [math-Ph], September 4, 2015. http://arxiv.org/abs/1509.01490.
  • Kodama, Yuji, Shigeki Matsutani, and Emma Previato. 2010. “Quasi-periodic and periodic solutions of the Toda lattice via the hyperelliptic sigma function.” 1008.0509 (August 3). http://arxiv.org/abs/1008.0509 .
  • Eilbeck, J C, V Z Enolski, and J Gibbons. 2010. Sigma, tau and Abelian functions of algebraic curves. Journal of Physics A: Mathematical and Theoretical 43, no. 45 (11): 455216. doi:10.1088/1751-8113/43/45/455216.
  • Eilbeck, J. C., V. Z. Enolski, S. Matsutani, Y. Ônishi, and E. Previato. “Abelian Functions for Trigonal Curves of Genus Three.” International Mathematics Research Notices, July 8, 2010. doi:10.1093/imrn/rnm140. http://arxiv.org/abs/math/0610019
  • Braden, Harry W, Victor Z Enolskii, and Andrew N. W Hone. 2005. “Bilinear recurrences and addition formulae for hyperelliptic sigma functions.” math/0501162 (January 11). http://arxiv.org/abs/math/0501162 .
  • Matsutani, Shigeki. “Elliptic and Hyperelliptic Solutions of Discrete Painlevé I and Its Extensions to Higher Order Difference Equations.” Physics Letters A 300, no. 2–3 (July 29, 2002): 233–42. doi:16/S0375-9601(02)00784-3
  • Ônishi, Yoshihiro. “Determinant Expressions for Hyperelliptic Functions (with an Appendix by Shigeki Matsutani).” arXiv:math/0105189, May 23, 2001. http://arxiv.org/abs/math/0105189.
  • Matsutani, Shigeki. 2000. Hyperelliptic Solutions of KdV and KP equations: Reevaluation of Baker's Study on Hyperelliptic Sigma Functions. nlin/0007001 (July 1). doi:doi:10.1088/0305-4470/34/22/312. http://arxiv.org/abs/nlin/0007001.