"Cyclotomic numbers and Chebyshev polynomials"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
 
(사용자 2명의 중간 판 7개는 보이지 않습니다)
4번째 줄: 4번째 줄:
 
*  quantum dimension and thier recurrence relation
 
*  quantum dimension and thier recurrence relation
 
:<math>d_i=\frac{\sin \frac{(i+1)\pi}{k+2}}{\sin \frac{\pi}{k+2}}</math> satisfies
 
:<math>d_i=\frac{\sin \frac{(i+1)\pi}{k+2}}{\sin \frac{\pi}{k+2}}</math> satisfies
:<math>d_i^2=1+d_{i-1}d_{i+1}</math> where <math>d_0=1</math>, <math>d_k=1</math><br>
+
:<math>d_i^2=1+d_{i-1}d_{i+1}</math> where <math>d_0=1</math>, <math>d_k=1</math>
  
 
+
  
#  (*choose k for c (2,k+2) minimal model*)k := 11<br> d[k_, i_] := Sin[(i + 1) Pi/(k + 2)]/Sin[Pi/(k + 2)]<br> Table[{i, d[k, i]}, {i, 1, k}] // TableForm<br> Table[{i, N[(d[k, i])^2 - (1 + d[k, i - 1]*d[k, i + 1]), 10]}, {i, 1,<br>    k}] // TableForm<br>
+
==diagonals of regular polygon==
#  Plot[d[k, i], {i, 0, 2 k}]<br>
+
* length of hepagon
 +
:<math>d_i = \frac{\sin (\pi  (i+1)/7)}{\sin (\pi/7)} </math>
  
 
+
 
 
 
 
 
 
==diagonals of polygon==
 
 
 
Clear[r]<br> r[i_] := Sin[((i + 1) Pi)/7]/Sin[Pi/7]<br> Table[N[r[i], 10], {i, 0, 5}]<br> Table[N[r[i]^2 - (1 + r[i - 1] r[i + 1]), 10], {i, 1, 4}]
 
 
 
 
 
 
 
 
 
  
 
==chebyshev polynomials==
 
==chebyshev polynomials==
  
 
* [http://pythagoras0.springnote.com/pages/4682477 체비셰프 다항식]
 
* [http://pythagoras0.springnote.com/pages/4682477 체비셰프 다항식]
* http://mathworld.wolfram.com/ChebyshevPolynomialoftheSecondKind.html<br> also obey the interesting [http://mathworld.wolfram.com/Determinant.html determinant] identity<br><br>
+
* http://mathworld.wolfram.com/ChebyshevPolynomialoftheSecondKind.html also obey the interesting [http://mathworld.wolfram.com/Determinant.html determinant] identity
 
 
 
 
 
 
 
 
 
 
==history==
 
 
 
* http://www.google.com/search?hl=en&tbs=tl:1&q=
 
  
 
+
  
 
+
  
 
==related items==
 
==related items==
44번째 줄: 27번째 줄:
 
* [[sl(2) - orthogonal polynomials and Lie theory]]
 
* [[sl(2) - orthogonal polynomials and Lie theory]]
  
 
+
  
 
+
  
 
==articles==
 
==articles==
  
* [http://www.jstor.org/stable/2691048 Golden Fields: A Case for the Heptagon]<br>
+
* [http://www.jstor.org/stable/2691048 Golden Fields: A Case for the Heptagon]
 
** Peter Steinbach, Mathematics Magazine Vol. 70, No. 1 (Feb., 1997), pp. 22-31
 
** Peter Steinbach, Mathematics Magazine Vol. 70, No. 1 (Feb., 1997), pp. 22-31
  
 
[[분류:개인노트]]
 
[[분류:개인노트]]
 
[[Category:quantum dimensions]]
 
[[Category:quantum dimensions]]

2020년 12월 28일 (월) 04:01 기준 최신판

introduction

\[d_i=\frac{\sin \frac{(i+1)\pi}{k+2}}{\sin \frac{\pi}{k+2}}\] satisfies \[d_i^2=1+d_{i-1}d_{i+1}\] where \(d_0=1\), \(d_k=1\)


diagonals of regular polygon

  • length of hepagon

\[d_i = \frac{\sin (\pi (i+1)/7)}{\sin (\pi/7)} \]


chebyshev polynomials



related items



articles