"Slater 92"의 두 판 사이의 차이
		
		
		
		
		
		둘러보기로 가기
		검색하러 가기
		
				
		
		
	
imported>Pythagoras0  | 
				Pythagoras0 (토론 | 기여)   | 
				||
| (같은 사용자의 중간 판 5개는 보이지 않습니다) | |||
| 1번째 줄: | 1번째 줄: | ||
==Note==  | ==Note==  | ||
| − | * [[twisted Chebyshev polynomials and dilogarithm identities|an explanation for dilogarithm ladder]]  | + | * [[twisted Chebyshev polynomials and dilogarithm identities|an explanation for dilogarithm ladder]][[twisted Chebyshev polynomials and dilogarithm identities|twisted Chebyshev polynomials and dilogarithm identities]]  | 
| − | *  Loxton & Lewin  | + | *  Loxton & Lewin<math>x, -y, -z^{-1}</math>가 방정식 <math>x^3+3x^2-1=0</math>의 해라고 하자.<math>3L(x^3)-9L(x^2)-9L(x)+7L(1)=0</math><math>3L(y^6)-6L(y^3)-27L(y^2)+18L(y)+2L(1)=0</math><math>3L(z^6)-6L(z^3)-27L(z^2)+18L(z)-2L(1)=0</math>  | 
| − | + | ||
| − | + | ||
==type of identity==  | ==type of identity==  | ||
* [[Slater list|Slater's list]]  | * [[Slater list|Slater's list]]  | ||
| − | *  B(3)  | + | *  B(3)  | 
| − | + | ||
| − | + | ||
==Bailey pair 1==  | ==Bailey pair 1==  | ||
| − | *  Use the folloing  | + | *  Use the folloing<math>\delta_n=\frac{(y)_n(z)_n x^n}{y^n z^n}</math>,  <math>\gamma_n=\frac{(x/y;q)_{\infty}(x/z;q)_{\infty}}{(x;q)_{\infty}(x/yz;q)_{\infty}}\frac{(y)_n(z)_n x^n}{(x/y)_{n}(x/z)_{n}y^n z^n}</math>  | 
| − | *  Specialize  | + | *  Specialize<math>x=q^2, y=-q, z\to\infty</math>.  | 
| − | *  Bailey pair  | + | *  Bailey pair<math>\delta_n=(-q)_{n}q^{\frac{n(n+1)}{2}}</math><math>\gamma_n=\frac{(-q)_{\infty}}{(q^2)_{\infty}}q^{\frac{n(n+1)}{2}}</math>  | 
| − | + | ||
| − | + | ||
==Bailey pair 2==  | ==Bailey pair 2==  | ||
| − | *  Use the   | + | *  Use the following <math>\sum_{r=0}^{n}\frac{(1-aq^{2r})(-1)^{r}q^{\frac{1}{2}(r^2+r)}(a)_{r}(c)_{r}(d)_{r}a^{r}}{(a)_{n+r+1}(q)_{n-r}(q)_{r}(aq/c)_{r}(aq/d)_{r}c^{r}d^{r}}=\frac{(aq/cd)_{n}}{(q)_{n}(aq/c)_{n}(aq/d)_{n}}</math>  | 
| − | *  Specialize  | + | *  Specialize<math>a=q,c=-q,d=\infty</math>  | 
| − | *  Bailey pair  | + | *  Bailey pair<math>\alpha_{0}=1</math>, <math>\alpha_{n}=(-1)^{n}q^{n^2}(1-q^{2n+1})/(1-q)</math><math>\beta_n=\sum_{r=0}^{n}\frac{\alpha_r}{(x)_{n-r}(q)_{n+r}}=\sum_{r=0}^{n}\frac{\alpha_r}{(q^{2})_{n-r}(q)_{n+r}}=\frac{1}{(q)_{n}(-q)_{n}}</math>  | 
| − | + | ||
| − | + | ||
| − | ==Bailey   | + | ==Bailey pair ==  | 
| − | *  Bailey pairs  | + | *  Bailey pairs<math>\delta_n=(-q)_{n}q^{\frac{n(n+1)}{2}}</math><math>\gamma_n=\frac{(-q)_{\infty}}{(q^2)_{\infty}}q^{\frac{n(n+1)}{2}}</math><math>\alpha_{n}=(-1)^{n}q^{n^2}(1-q^{2n+1})/(1-q)</math><math>\beta_n=\frac{1}{(q)_{n}(-q)_{n}}</math>  | 
| − | + | ||
| − | + | ||
==q-series identity==  | ==q-series identity==  | ||
| 49번째 줄: | 49번째 줄: | ||
<math>\sum_{n=0}^{\infty}\frac{(q^3;q^3)_{n}q^{n(n+1)}}{ (q)_{n}(q;q^{2})_n(q^2;q^2)_{n}}=\frac{(q^{9};q^{27})_{\infty}(q^{18};q^{27})_{\infty}(q^{27};q^{27})_{\infty}}{(q)_{\infty}}</math>  | <math>\sum_{n=0}^{\infty}\frac{(q^3;q^3)_{n}q^{n(n+1)}}{ (q)_{n}(q;q^{2})_n(q^2;q^2)_{n}}=\frac{(q^{9};q^{27})_{\infty}(q^{18};q^{27})_{\infty}(q^{27};q^{27})_{\infty}}{(q)_{\infty}}</math>  | ||
| − | + | ||
| − | * [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]  | + | * [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]  | 
** http://www.research.att.com/~njas/sequences/?q=  | ** http://www.research.att.com/~njas/sequences/?q=  | ||
| − | + | ||
| − | + | ||
| − | + | ||
==Bethe type equation (cyclotomic equation)==  | ==Bethe type equation (cyclotomic equation)==  | ||
| − | + | Let <math>\sum_{n=0}^{\infty}\frac{q^{n(an+b)/2}}{  | |
  \prod_{j=1}^{r}(q^{c_j};q^{d_j})_n^{e_j}}=\sum_{N=0}^{\infty} a_N q^{N}</math>.  |   \prod_{j=1}^{r}(q^{c_j};q^{d_j})_n^{e_j}}=\sum_{N=0}^{\infty} a_N q^{N}</math>.  | ||
| − | + | Then <math>\prod_{j=1}^{r}(1-x^{d_j})^{e_j}=x^a</math>  has a unique root <math>0<\mu<1</math>. We get  | |
<math>\log^2 a_N \sim 4N\sum_{j=1}^{r}\frac{e_j}{d_j}L(1-\mu^{d_j})</math>  | <math>\log^2 a_N \sim 4N\sum_{j=1}^{r}\frac{e_j}{d_j}L(1-\mu^{d_j})</math>  | ||
| − | + | ||
a=2,d_1=1,d_2=2,d_3=2,e_1=e_2=e_3=1  | a=2,d_1=1,d_2=2,d_3=2,e_1=e_2=e_3=1  | ||
| − | + | ||
<math>\frac{(1-x)(1-x^2)^2}{(1-x^3)}=x^2</math>  | <math>\frac{(1-x)(1-x^2)^2}{(1-x^3)}=x^2</math>  | ||
| 79번째 줄: | 79번째 줄: | ||
<math>x^3+3x^2-1=0</math>  | <math>x^3+3x^2-1=0</math>  | ||
| − | <math>x, -y, -z^{-1}</math>가   | + | <math>x, -y, -z^{-1}</math>가 방정식 의 해 [http://www.wolframalpha.com/input/?i=x%5E3%2B3x%5E2-1%3D0 http://www.wolframalpha.com/input/?i=x^3%2B3x^2-1%3D0]  | 
| − | + | ||
| − | + | ||
==dilogarithm identity==  | ==dilogarithm identity==  | ||
| 89번째 줄: | 89번째 줄: | ||
<math>L(x^3)-3L(x^2)-3L(x)=-\frac{7}{3}L(1)</math>  | <math>L(x^3)-3L(x^2)-3L(x)=-\frac{7}{3}L(1)</math>  | ||
| − | + | ||
| − | + | ||
==related items==  | ==related items==  | ||
| − | + | ||
| − | + | ||
| − | + | ||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
[[분류:개인노트]]  | [[분류:개인노트]]  | ||
[[분류:math and physics]]  | [[분류:math and physics]]  | ||
[[분류:migrate]]  | [[분류:migrate]]  | ||
2020년 12월 28일 (월) 04:02 기준 최신판
Note
- an explanation for dilogarithm laddertwisted Chebyshev polynomials and dilogarithm identities
 - Loxton & Lewin\(x, -y, -z^{-1}\)가 방정식 \(x^3+3x^2-1=0\)의 해라고 하자.\(3L(x^3)-9L(x^2)-9L(x)+7L(1)=0\)\(3L(y^6)-6L(y^3)-27L(y^2)+18L(y)+2L(1)=0\)\(3L(z^6)-6L(z^3)-27L(z^2)+18L(z)-2L(1)=0\)
 
 
 
type of identity
- Slater's list
 - B(3)
 
 
 
Bailey pair 1
- Use the folloing\(\delta_n=\frac{(y)_n(z)_n x^n}{y^n z^n}\), \(\gamma_n=\frac{(x/y;q)_{\infty}(x/z;q)_{\infty}}{(x;q)_{\infty}(x/yz;q)_{\infty}}\frac{(y)_n(z)_n x^n}{(x/y)_{n}(x/z)_{n}y^n z^n}\)
 - Specialize\(x=q^2, y=-q, z\to\infty\).
 - Bailey pair\(\delta_n=(-q)_{n}q^{\frac{n(n+1)}{2}}\)\(\gamma_n=\frac{(-q)_{\infty}}{(q^2)_{\infty}}q^{\frac{n(n+1)}{2}}\)
 
 
 
Bailey pair 2
- Use the following \(\sum_{r=0}^{n}\frac{(1-aq^{2r})(-1)^{r}q^{\frac{1}{2}(r^2+r)}(a)_{r}(c)_{r}(d)_{r}a^{r}}{(a)_{n+r+1}(q)_{n-r}(q)_{r}(aq/c)_{r}(aq/d)_{r}c^{r}d^{r}}=\frac{(aq/cd)_{n}}{(q)_{n}(aq/c)_{n}(aq/d)_{n}}\)
 - Specialize\(a=q,c=-q,d=\infty\)
 - Bailey pair\(\alpha_{0}=1\), \(\alpha_{n}=(-1)^{n}q^{n^2}(1-q^{2n+1})/(1-q)\)\(\beta_n=\sum_{r=0}^{n}\frac{\alpha_r}{(x)_{n-r}(q)_{n+r}}=\sum_{r=0}^{n}\frac{\alpha_r}{(q^{2})_{n-r}(q)_{n+r}}=\frac{1}{(q)_{n}(-q)_{n}}\)
 
 
 
Bailey pair
- Bailey pairs\(\delta_n=(-q)_{n}q^{\frac{n(n+1)}{2}}\)\(\gamma_n=\frac{(-q)_{\infty}}{(q^2)_{\infty}}q^{\frac{n(n+1)}{2}}\)\(\alpha_{n}=(-1)^{n}q^{n^2}(1-q^{2n+1})/(1-q)\)\(\beta_n=\frac{1}{(q)_{n}(-q)_{n}}\)
 
 
 
q-series identity
\(\sum_{n=0}^{\infty}\frac{(q^3;q^3)_{n}q^{n(n+1)}}{ (q)_{n}(q;q^{2})_n(q^2;q^2)_{n}}=\frac{(q^{9};q^{27})_{\infty}(q^{18};q^{27})_{\infty}(q^{27};q^{27})_{\infty}}{(q)_{\infty}}\)
 
 
 
 
Bethe type equation (cyclotomic equation)
Let \(\sum_{n=0}^{\infty}\frac{q^{n(an+b)/2}}{ \prod_{j=1}^{r}(q^{c_j};q^{d_j})_n^{e_j}}=\sum_{N=0}^{\infty} a_N q^{N}\).
Then \(\prod_{j=1}^{r}(1-x^{d_j})^{e_j}=x^a\) has a unique root \(0<\mu<1\). We get
\(\log^2 a_N \sim 4N\sum_{j=1}^{r}\frac{e_j}{d_j}L(1-\mu^{d_j})\)
 
a=2,d_1=1,d_2=2,d_3=2,e_1=e_2=e_3=1
 
\(\frac{(1-x)(1-x^2)^2}{(1-x^3)}=x^2\)
\(x^3+3x^2-1=0\)
\(x, -y, -z^{-1}\)가 방정식 의 해 http://www.wolframalpha.com/input/?i=x^3%2B3x^2-1%3D0
 
 
dilogarithm identity
\(L(x^3)-3L(x^2)-3L(x)=-\frac{7}{3}L(1)\)