"Sato theory"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
(피타고라스님이 이 페이지의 위치를 <a href="/pages/7491811">methods to find solutions</a>페이지로 이동하였습니다.)
 
(사용자 3명의 중간 판 44개는 보이지 않습니다)
1번째 줄: 1번째 줄:
<h5>introduction</h5>
+
==introduction==
  
* Sato’s Grassmannian and its determinant bundle became a “universal” setting where moduli spaces of curves (or maps or bundles) of arbitrary genus could<br> be mapped and made to interact
+
* Sato’s Grassmannian and its determinant bundle became a “universal” setting where moduli spaces of curves (or maps or bundles) of arbitrary genus could be mapped and made to interact
Matsutani, Shigeki. 2000. Hyperelliptic Solutions of KdV and KP equations: Reevaluation of Baker's Study on Hyperelliptic Sigma Functions. nlin/0007001 (July 1). doi:doi:[http://dx.doi.org/10.1088/0305-4470/34/22/312 10.1088/0305-4470/34/22/312]. http://arxiv.org/abs/nlin/0007001. <br>  <br>
+
* [[tau functions|tau function]] = the section of a determinant line bundle over an infinite-dimensional Grassmannian
 +
* Sato found that character polynomials (Schur functions) solve the KP hierarchy and, based on this observation, he created the theory of the infinite-dimensional (universal) Grassmann manifold and showed that the Hirota bilinear equations are nothing but the Plucker relations for this Grassmann manifold.
  
[[KdV equation]]
+
  
<math>K(x,t)=1+e^{2a(x-4a^2t+\delta)}</math>
+
  
<math>2(\frac{\partial^2}{\partial x^2})\log K(x,t)</math>
+
==KdV hierarchy==
  
<math>K(x,t)=1+A_1e^{2a_1(x-4a_1^2t+\delta_1)}+A_2e^{2a_2(x-4a_2^2t+\delta_2)}+A_3e^{2a_1(x-4a_1^2t+\delta_1)+{2a_2(x-4a_2^2t+\delta_2)}</math>
+
The totality of soliton equations organized in this way is called a hierarchy of soliton equations; in the KdV case, it is called the KdV hierarchy. This notion of hierarchy was introduced by M Sato. He tried to understand the nature of the bilinear method of Hirota. First, he counted the number of Hirota bilinear operators of given degree for hierarchies of soliton equations. For the number of bilinear equations,M Sato and Y Sato made extensive computations and made many conjectures that involve eumeration of partitions.
  
<math>2(\frac{\partial^2}{\partial x^2})\log K(x,t)</math>
+
  
 
+
  
 
+
==Wronskian determinant==
  
Algebraic Geometrical Methods in Hamiltonian Mechanics http://www.jstor.org/stable/37539
+
  
 
+
  
<h5>history</h5>
+
  
* http://www.google.com/search?hl=en&tbs=tl:1&q=
+
==universal Grassmanian manifold==
  
 
+
  
 
+
  
<h5>related items</h5>
+
  
* [[Kadometsev-Petviashvii equation (KP equation)|Kadometsev-Petviashvii (KP hierarchy)]]
+
==relation to Kac-Moody algebras==
  
 
+
* the totality of tau-functions of the KdV hierarchy is the group orbit of the highest weight vector (=1) of the basic representation of A_1^1
 +
* applications of vertex operators are precisely Ba¨cklund transformations
 +
* This implies that the affine Lie algebra A(1) 1 is the infinitesimal transformation group for solutions of the KdV hierarchy.
 +
* Frenkel–Kac had already used free fermions to construct basic representations. In this approach, the tau-functions are defined as vacuum expectation values.
  
 
+
  
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">encyclopedia</h5>
+
  
* http://en.wikipedia.org/wiki/
+
* http://www.scholarpedia.org/
 
* [http://eom.springer.de/ http://eom.springer.de]
 
* http://www.proofwiki.org/wiki/
 
* Princeton companion to mathematics([[2910610/attachments/2250873|Companion_to_Mathematics.pdf]])
 
  
 
+
==role in conformal field theory==
  
 
+
* Kawamoto, Noboru, Yukihiko Namikawa, Akihiro Tsuchiya, 와/과Yasuhiko Yamada. 1988. “Geometric realization of conformal field theory on Riemann surfaces”. <em>Communications in Mathematical Physics</em> 116 (2): 247-308. doi:10.1007/BF01225258.
  
<h5>books</h5>
+
  
* Discrete Integrable Systems http://dx.doi.org/10.1007/b94662
+
* Book review on [http://www.math.ntnu.no/%7Eholden/solitons/BullAMS_book.pdf Soliton equations and their algebro-geometric solutions. Vol. I. (1+1)-dimensional continuous models]
 
* [[2011년 books and articles]]
 
* http://library.nu/search?q=
 
* http://library.nu/search?q=
 
  
 
+
==related items==
  
 
+
* [[Kadometsev-Petviashvii equation (KP equation)|Kadometsev-Petviashvii (KP hierarchy)]]
  
<h5>expositions</h5>
+
  
* [http://yokoemon.web.fc2.com/KANT2010/Notes/Yamazaki.pdf Sato theory, p-adic tau function and arithmetic geometry]
+
==books==
*
 
* Segal, Graeme, and George Wilson. 1985. Loop groups and equations of KdV type. Publications Mathématiques de L’Institut des Hautes Scientifiques 61, no. 1 (12): 5-65. doi:[http://dx.doi.org/10.1007/BF02698802 10.1007/BF02698802].
 
  
 
+
* Discrete Integrable Systems http://dx.doi.org/10.1007/b94662
 +
* Book review on [http://www.math.ntnu.no/%7Eholden/solitons/BullAMS_book.pdf Soliton equations and their algebro-geometric solutions. Vol. I. (1+1)-dimensional continuous models]
  
 
 
  
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">articles</h5>
+
  
* Eilbeck, J C, V Z Enolski, and J Gibbons. 2010. Sigma, tau and Abelian functions of algebraic curves. Journal of Physics A: Mathematical and Theoretical 43, no. 45 (11): 455216. doi:[http://dx.doi.org/10.1088/1751-8113/43/45/455216 10.1088/1751-8113/43/45/455216]. 
+
==expositions==
*  Eilbeck, J. C., V. Z. Enolski, S. Matsutani, Y. Onishi, and E. Previato. 2010. Abelian Functions for Trigonal Curves of Genus Three. International Mathematics Research Notices (7). doi:[http://dx.doi.org/10.1093/imrn/rnm140 10.1093/imrn/rnm140]. http://imrn.oxfordjournals.org/content/2007/rnm140.short. <br>  <br>
 
* http://www.ams.org/mathscinet
 
* http://www.zentralblatt-math.org/zmath/en/
 
* http://arxiv.org/
 
* http://www.pdf-search.org/
 
* http://pythagoras0.springnote.com/
 
* [http://math.berkeley.edu/%7Ereb/papers/index.html http://math.berkeley.edu/~reb/papers/index.html]
 
* http://dx.doi.org/10.1007/b94662
 
  
 
+
* [http://yokoemon.web.fc2.com/KANT2010/Notes/Yamazaki.pdf Sato theory, p-adic tau function and arithmetic geometry]
 
+
* Algebraic Geometrical Methods in Hamiltonian Mechanics [http://www.jstor.org/stable/37539 ]http://www.jstor.org/stable/37539
 
+
* [http://www.math.ucdavis.edu/%7Emulase/texfiles/algebraictheo.pdf Algebraic theory of the KP equations], M Mulase - Perspectives in mathematical physics, 1994
 
+
* Segal, Graeme, and George Wilson. 1985. Loop groups and equations of KdV type. Publications Mathématiques de L’Institut des Hautes Scientifiques 61, no. 1 (12): 5-65. doi:[http://dx.doi.org/10.1007/BF02698802 10.1007/BF02698802].
<h5>question and answers(Math Overflow)</h5>
+
*  Sato interview
 
+
** http://www.ams.org/notices/200702/fea-sato-2.pdf
* http://mathoverflow.net/search?q=
+
** http://www.ams.org/notices/200702/comm-schapira.pdf
* http://mathoverflow.net/search?q=
+
* The KP hierarchy and infinite-dimensional Grassmann manifolds M Sato - Theta functions—Bowdoin, 1987
 
 
 
 
 
 
 
 
 
 
<h5>blogs</h5>
 
 
 
* 구글 블로그 검색<br>
 
**  http://blogsearch.google.com/blogsearch?q=<br>
 
** http://blogsearch.google.com/blogsearch?q=
 
* http://ncatlab.org/nlab/show/HomePage
 
 
 
 
 
 
 
 
 
  
<h5>experts on the field</h5>
+
  
* http://arxiv.org/
+
  
 
+
==articles==
 +
* Letterio Gatto, Parham Salehyan, On Plücker Equations Characterizing Grassmann Cones, http://arxiv.org/abs/1603.00510v1
 +
* Luu, Martin, and Matej Penciak. “Langlands Parameters of Symmetric Unitary Matrix Models.” arXiv:1511.07466 [math-Ph, Physics:nlin], November 23, 2015. http://arxiv.org/abs/1511.07466.
 +
* Harnad, J., and A. Yu. Orlov. “Fermionic Construction of Tau Functions and Random Processes.” Physica D: Nonlinear Phenomena, Physics and Mathematics of Growing Interfaces In honor of Stan Richardson’s discoveries in Laplacian Growth and related free boundary problem, 235, no. 1–2 (November 2007): 168–206. doi:10.1016/j.physd.2007.05.011. http://dx.doi.org/10.1016/j.physd.2007.05.011
 +
* Eilbeck, J. C., V. Z. Enolski, S. Matsutani, Y. Onishi, and E. Previato. 2010. Abelian Functions for Trigonal Curves of Genus Three. International Mathematics Research Notices (7). doi:[http://dx.doi.org/10.1093/imrn/rnm140 10.1093/imrn/rnm140]. http://imrn.oxfordjournals.org/content/2007/rnm140.short.
 +
* Kajiwara, Kenji, Marta Mazzocco, 와/과Yasuhiro Ohta. 2007. “A remark on the Hankel determinant formula for solutions of the Toda equation”. <em>Journal of Physics A: Mathematical and Theoretical</em> 40 (42): 12661-12675. doi:[http://dx.doi.org/10.1088/1751-8113/40/42/S11 10.1088/1751-8113/40/42/S11].
 +
* Borodin, Alexei, and Percy Deift. 2002. “'''Fredholm determinants, Jimbo‐Miwa‐Ueno τ‐functions, and representation theory'''.” <em>Communications on Pure and Applied Mathematics</em> 55 (9) (September 1): 1160-1230. doi:10.1002/cpa.10042.
 +
* Poppe, C. 1989. “General determinants and the tau function for the Kadomtsev-Petviashvili hierarchy”. <em>Inverse Problems</em> 5 (4): 613-630. doi:[http://dx.doi.org/10.1088/0266-5611/5/4/012 10.1088/0266-5611/5/4/012].
 +
* Freeman, N. C., 와/과J. J. C. Nimmo. 1983. “Soliton solutions of the Korteweg-de Vries and Kadomtsev-Petviashvili equations: The wronskian technique”. <em>Physics Letters A</em> 95 (1) (4월 11): 1-3. doi:[http://dx.doi.org/10.1016/0375-9601%2883%2990764-8 10.1016/0375-9601(83)90764-8]
 +
* M. Sato and Y. Sato, Soliton equations as dynamical systems on infi- nite dimensional Grassmann manifold, in Nonlinear Partial Differential. Equations in Applied Science
  
 
 
  
<h5>links</h5>
 
  
* [http://detexify.kirelabs.org/classify.html Detexify2 - LaTeX symbol classifier]
+
[[분류:개인노트]]
* [http://pythagoras0.springnote.com/pages/1947378 수식표현 안내]
+
[[분류:integrable systems]]
* [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]
+
[[분류:math and physics]]
* http://functions.wolfram.com/
+
[[분류:migrate]]

2020년 12월 28일 (월) 05:07 기준 최신판

introduction

  • Sato’s Grassmannian and its determinant bundle became a “universal” setting where moduli spaces of curves (or maps or bundles) of arbitrary genus could be mapped and made to interact
  • tau function = the section of a determinant line bundle over an infinite-dimensional Grassmannian
  • Sato found that character polynomials (Schur functions) solve the KP hierarchy and, based on this observation, he created the theory of the infinite-dimensional (universal) Grassmann manifold and showed that the Hirota bilinear equations are nothing but the Plucker relations for this Grassmann manifold.



KdV hierarchy

The totality of soliton equations organized in this way is called a hierarchy of soliton equations; in the KdV case, it is called the KdV hierarchy. This notion of hierarchy was introduced by M Sato. He tried to understand the nature of the bilinear method of Hirota. First, he counted the number of Hirota bilinear operators of given degree for hierarchies of soliton equations. For the number of bilinear equations,M Sato and Y Sato made extensive computations and made many conjectures that involve eumeration of partitions.



Wronskian determinant

universal Grassmanian manifold

relation to Kac-Moody algebras

  • the totality of tau-functions of the KdV hierarchy is the group orbit of the highest weight vector (=1) of the basic representation of A_1^1
  • applications of vertex operators are precisely Ba¨cklund transformations
  • This implies that the affine Lie algebra A(1) 1 is the infinitesimal transformation group for solutions of the KdV hierarchy.
  • Frenkel–Kac had already used free fermions to construct basic representations. In this approach, the tau-functions are defined as vacuum expectation values.




role in conformal field theory

  • Kawamoto, Noboru, Yukihiko Namikawa, Akihiro Tsuchiya, 와/과Yasuhiko Yamada. 1988. “Geometric realization of conformal field theory on Riemann surfaces”. Communications in Mathematical Physics 116 (2): 247-308. doi:10.1007/BF01225258.



related items


books



expositions



articles

  • Letterio Gatto, Parham Salehyan, On Plücker Equations Characterizing Grassmann Cones, http://arxiv.org/abs/1603.00510v1
  • Luu, Martin, and Matej Penciak. “Langlands Parameters of Symmetric Unitary Matrix Models.” arXiv:1511.07466 [math-Ph, Physics:nlin], November 23, 2015. http://arxiv.org/abs/1511.07466.
  • Harnad, J., and A. Yu. Orlov. “Fermionic Construction of Tau Functions and Random Processes.” Physica D: Nonlinear Phenomena, Physics and Mathematics of Growing Interfaces In honor of Stan Richardson’s discoveries in Laplacian Growth and related free boundary problem, 235, no. 1–2 (November 2007): 168–206. doi:10.1016/j.physd.2007.05.011. http://dx.doi.org/10.1016/j.physd.2007.05.011
  • Eilbeck, J. C., V. Z. Enolski, S. Matsutani, Y. Onishi, and E. Previato. 2010. Abelian Functions for Trigonal Curves of Genus Three. International Mathematics Research Notices (7). doi:10.1093/imrn/rnm140. http://imrn.oxfordjournals.org/content/2007/rnm140.short.
  • Kajiwara, Kenji, Marta Mazzocco, 와/과Yasuhiro Ohta. 2007. “A remark on the Hankel determinant formula for solutions of the Toda equation”. Journal of Physics A: Mathematical and Theoretical 40 (42): 12661-12675. doi:10.1088/1751-8113/40/42/S11.
  • Borodin, Alexei, and Percy Deift. 2002. “Fredholm determinants, Jimbo‐Miwa‐Ueno τ‐functions, and representation theory.” Communications on Pure and Applied Mathematics 55 (9) (September 1): 1160-1230. doi:10.1002/cpa.10042.
  • Poppe, C. 1989. “General determinants and the tau function for the Kadomtsev-Petviashvili hierarchy”. Inverse Problems 5 (4): 613-630. doi:10.1088/0266-5611/5/4/012.
  • Freeman, N. C., 와/과J. J. C. Nimmo. 1983. “Soliton solutions of the Korteweg-de Vries and Kadomtsev-Petviashvili equations: The wronskian technique”. Physics Letters A 95 (1) (4월 11): 1-3. doi:10.1016/0375-9601(83)90764-8
  • M. Sato and Y. Sato, Soliton equations as dynamical systems on infi- nite dimensional Grassmann manifold, in Nonlinear Partial Differential. Equations in Applied Science