"Transfer matrix in statistical mechanics"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
imported>Pythagoras0 잔글 (찾아 바꾸기 – “4909919” 문자열을 “” 문자열로) |
Pythagoras0 (토론 | 기여) |
||
(사용자 2명의 중간 판 17개는 보이지 않습니다) | |||
1번째 줄: | 1번째 줄: | ||
==introduction== | ==introduction== | ||
− | + | * transfer matrix is builtup from matrices of Boltzmann weights | |
− | * transfer matrix is builtup from matrices of | + | * trace of [[Monodromy matrix]] is the transfer matrix |
− | * trace of | ||
* finding eigenvalues and eigenvectors of transfer matrix is crucial | * finding eigenvalues and eigenvectors of transfer matrix is crucial | ||
− | + | * partition function = trace of power of transfer matrices | |
− | * partition function = | + | * so the partition function is calculated in terms of the eigenvalues of the transfer matrix |
− | * so | + | * then the problem of solving the model is reduced to the computation of this trace |
− | |||
− | + | ==Bethe ansatz== | |
− | + | * [[Bethe ansatz]] equation is used to find the eigenvectors and eigenvalues of the transfer matrix | |
− | |||
− | |||
− | == | ||
− | |||
− | + | ==transfer matrix of the six-vertex model== | |
+ | * [[Six-vertex model and Quantum XXZ Hamiltonian]] | ||
− | + | ||
==related items== | ==related items== | ||
+ | * [[S-matrix or scattering matrix]] | ||
+ | * [[1d Ising model]] | ||
+ | * [[Ising model on rectangular lattice]] | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
==expositions== | ==expositions== | ||
− | + | * “The Kramers-Wannier Transfer Matrix.” 1980. In The Ruelle-Araki Transfer Operator in Classical Statistical Mechanics, 13–39. Lecture Notes in Physics 123. Springer Berlin Heidelberg. http://link.springer.com/chapter/10.1007/BFb0017921. | |
− | * | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
[[분류:개인노트]] | [[분류:개인노트]] | ||
[[분류:integrable systems]] | [[분류:integrable systems]] | ||
[[분류:math and physics]] | [[분류:math and physics]] | ||
+ | [[분류:migrate]] |
2020년 12월 28일 (월) 04:07 기준 최신판
introduction
- transfer matrix is builtup from matrices of Boltzmann weights
- trace of Monodromy matrix is the transfer matrix
- finding eigenvalues and eigenvectors of transfer matrix is crucial
- partition function = trace of power of transfer matrices
- so the partition function is calculated in terms of the eigenvalues of the transfer matrix
- then the problem of solving the model is reduced to the computation of this trace
Bethe ansatz
- Bethe ansatz equation is used to find the eigenvectors and eigenvalues of the transfer matrix
transfer matrix of the six-vertex model
expositions
- “The Kramers-Wannier Transfer Matrix.” 1980. In The Ruelle-Araki Transfer Operator in Classical Statistical Mechanics, 13–39. Lecture Notes in Physics 123. Springer Berlin Heidelberg. http://link.springer.com/chapter/10.1007/BFb0017921.