"Bailey pair and lemma"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
Pythagoras0 (토론 | 기여) (→메타데이터: 새 문단) |
Pythagoras0 (토론 | 기여) |
||
4번째 줄: | 4번째 줄: | ||
* [[Rogers-Ramanujan continued fraction]] | * [[Rogers-Ramanujan continued fraction]] | ||
− | + | ||
− | + | ||
==articles== | ==articles== | ||
15번째 줄: | 15번째 줄: | ||
** Boris Feigin, Omar Foda, Trevor Welsh, 2007 | ** Boris Feigin, Omar Foda, Trevor Welsh, 2007 | ||
* [http://www.combinatorics.org/Volume_10/PDF/v10i1r13.pdf Finite Rogers-Ramanujan Type Identities] | * [http://www.combinatorics.org/Volume_10/PDF/v10i1r13.pdf Finite Rogers-Ramanujan Type Identities] | ||
− | ** Andrew V. Sills, | + | ** Andrew V. Sills, 2003 |
* [http://dx.doi.org/10.1142/S0217751X97001110 Virasoro character identities from the Andrews–Bailey construction] | * [http://dx.doi.org/10.1142/S0217751X97001110 Virasoro character identities from the Andrews–Bailey construction] | ||
− | ** Foda, O., Quano, Y.-H, | + | ** Foda, O., Quano, Y.-H, Int. J. Mod. Phys. A 12, 1651–1675 (1997) |
* [http://projecteuclid.org/euclid.pjm/1102708707 Multiple series Rogers-Ramanujan type identities.] | * [http://projecteuclid.org/euclid.pjm/1102708707 Multiple series Rogers-Ramanujan type identities.] | ||
− | ** George E. Andrews, Pacific J. Math. | + | ** George E. Andrews, Pacific J. Math. Volume 114, Number 2 (1984), 267-283. |
* [http://matwbn.icm.edu.pl/ksiazki/aa/aa43/aa4326.pdf Special values of the dilogarithm function] | * [http://matwbn.icm.edu.pl/ksiazki/aa/aa43/aa4326.pdf Special values of the dilogarithm function] | ||
** J. H. Loxton, 1984 | ** J. H. Loxton, 1984 | ||
26번째 줄: | 26번째 줄: | ||
** Slater, L. J. (1962), Journal of the London Mathematical Society. Second Series 37: 504–512 | ** Slater, L. J. (1962), Journal of the London Mathematical Society. Second Series 37: 504–512 | ||
* [http://dx.doi.org/10.1112%2Fplms%2Fs2-54.2.147 Further identities of the Rogers-Ramanujan type] | * [http://dx.doi.org/10.1112%2Fplms%2Fs2-54.2.147 Further identities of the Rogers-Ramanujan type] | ||
− | ** Slater, L. J. (1952), | + | ** Slater, L. J. (1952), Proceedings of the London Mathematical Society. Second Series 54: 147–167 |
* [http://dx.doi.org/10.1112/plms/s2-53.6.460 A New Proof of Rogers's Transformations of Infinite Series] | * [http://dx.doi.org/10.1112/plms/s2-53.6.460 A New Proof of Rogers's Transformations of Infinite Series] | ||
** Slater, L. J. (1952), Proc. London Math. Soc. 1951 s2-53: 460-475 | ** Slater, L. J. (1952), Proc. London Math. Soc. 1951 s2-53: 460-475 | ||
* [http://plms.oxfordjournals.org/cgi/reprint/s2-50/1/1.pdf Identities of Rogers-Ramanujan type] | * [http://plms.oxfordjournals.org/cgi/reprint/s2-50/1/1.pdf Identities of Rogers-Ramanujan type] | ||
− | ** Bailey, | + | ** Bailey, 1944 |
[[분류:math and physics]] | [[분류:math and physics]] | ||
[[분류:migrate]] | [[분류:migrate]] |
2020년 12월 28일 (월) 04:11 판
- manufacturing matrices from lower ranks
- q-analogue of summation formulas
- Rogers-Ramanujan continued fraction
articles
- Patkowski, Alexander E. ‘A Note on Some Partitions Related to Ternary Quadratic Forms’. arXiv:1503.08516 [math], 29 March 2015. http://arxiv.org/abs/1503.08516.
- A. Schilling, S.O. Warnaar A generalization of the q-Saalschutz sum and the Burge transform, 2009
- Mc Laughlin Rogers-Ramanujan-Slater Type identities, 2008
- Andrews–Gordon type identities from combinations of Virasoro characters
- Boris Feigin, Omar Foda, Trevor Welsh, 2007
- Finite Rogers-Ramanujan Type Identities
- Andrew V. Sills, 2003
- Virasoro character identities from the Andrews–Bailey construction
- Foda, O., Quano, Y.-H, Int. J. Mod. Phys. A 12, 1651–1675 (1997)
- Multiple series Rogers-Ramanujan type identities.
- George E. Andrews, Pacific J. Math. Volume 114, Number 2 (1984), 267-283.
- Special values of the dilogarithm function
- J. H. Loxton, 1984
- Wilfrid Norman Bailey
- Slater, L. J. (1962), Journal of the London Mathematical Society. Second Series 37: 504–512
- Further identities of the Rogers-Ramanujan type
- Slater, L. J. (1952), Proceedings of the London Mathematical Society. Second Series 54: 147–167
- A New Proof of Rogers's Transformations of Infinite Series
- Slater, L. J. (1952), Proc. London Math. Soc. 1951 s2-53: 460-475
- Identities of Rogers-Ramanujan type
- Bailey, 1944
메타데이터
위키데이터
- ID : Q4848398