"Minors and plucker relations"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
(→‎메타데이터: 새 문단)
2번째 줄: 2번째 줄:
  
 
# (mat = Array[Subscript[a, ##] &, {3, 3}]) // MatrixForm Minors[mat] // MatrixForm Minors[mat, 1] // MatrixForm Minors[mat, 2] // MatrixForm Minors[mat, 3] // MatrixForm
 
# (mat = Array[Subscript[a, ##] &, {3, 3}]) // MatrixForm Minors[mat] // MatrixForm Minors[mat, 1] // MatrixForm Minors[mat, 2] // MatrixForm Minors[mat, 3] // MatrixForm
# Simplify[Subscript[a, 1,    3]*(-Subscript[a, 1, 2] Subscript[a, 2, 1] +      Subscript[a, 1, 1] Subscript[a, 2, 2]) +   Subscript[a, 1,    1]*(-Subscript[a, 1, 3] Subscript[a, 2, 2] +      Subscript[a, 1, 2] Subscript[a, 2, 3])]
+
# Simplify[Subscript[a, 1,   3]*(-Subscript[a, 1, 2] Subscript[a, 2, 1] +     Subscript[a, 1, 1] Subscript[a, 2, 2]) +   Subscript[a, 1,   1]*(-Subscript[a, 1, 3] Subscript[a, 2, 2] +     Subscript[a, 1, 2] Subscript[a, 2, 3])]
  
 
+
  
 
+
  
 
+
  
 
+
  
 
==3-term Plucker relation (Ptolemy relation)==
 
==3-term Plucker relation (Ptolemy relation)==
17번째 줄: 17번째 줄:
 
* <math>\Delta _{1,2}\Delta _{3,4}+\Delta _{1,4}\Delta _{2,3}=\Delta _{1,3}\Delta _{2,4}</math>
 
* <math>\Delta _{1,2}\Delta _{3,4}+\Delta _{1,4}\Delta _{2,3}=\Delta _{1,3}\Delta _{2,4}</math>
  
# T := {{Subscript[a, 1, 1], Subscript[a, 1, 2], Subscript[a, 1, 3],    Subscript[a, 1, 4]}, {Subscript[a, 2, 1], Subscript[a, 2, 2],    Subscript[a, 2, 3], Subscript[a, 2, 4]}} Minor[i_, j_] := Det[{Transpose[T][[i]], Transpose[T][[j]]}] Minor[1, 2]
+
# T := {{Subscript[a, 1, 1], Subscript[a, 1, 2], Subscript[a, 1, 3],   Subscript[a, 1, 4]}, {Subscript[a, 2, 1], Subscript[a, 2, 2],   Subscript[a, 2, 3], Subscript[a, 2, 4]}} Minor[i_, j_] := Det[{Transpose[T][[i]], Transpose[T][[j]]}] Minor[1, 2]
 
# Simplify[Minor[1, 2] Minor[3, 4] + Minor[1, 4] Minor[2, 3]] Simplify[Minor[1, 3] Minor[2, 4]]
 
# Simplify[Minor[1, 2] Minor[3, 4] + Minor[1, 4] Minor[2, 3]] Simplify[Minor[1, 3] Minor[2, 4]]
  
 
+
  
 
+
  
 
==Plucker relations==
 
==Plucker relations==
30번째 줄: 30번째 줄:
 
# \Delta _{12,12}\text{:=}-a_{1,2} a_{2,1}+a_{1,1} a_{2,2}\Delta _{12,23}\text{:=}-a_{1,3} a_{2,2}+a_{1,2} a_{2,3}\Delta _{1,3}\text{:=}a_{1,1}\Delta _{1,3}\text{:=}a_{1,3}\Delta _{1,3}\Delta _{12,12}+\Delta _{1,1}\Delta _{12,23}
 
# \Delta _{12,12}\text{:=}-a_{1,2} a_{2,1}+a_{1,1} a_{2,2}\Delta _{12,23}\text{:=}-a_{1,3} a_{2,2}+a_{1,2} a_{2,3}\Delta _{1,3}\text{:=}a_{1,1}\Delta _{1,3}\text{:=}a_{1,3}\Delta _{1,3}\Delta _{12,12}+\Delta _{1,1}\Delta _{12,23}
  
 
+
  
 
+
  
 
==Plucker coordinates of a Grassmannian==
 
==Plucker coordinates of a Grassmannian==
  
 
+
  
 
+
  
 
==memo==
 
==memo==

2020년 12월 28일 (월) 04:14 판

introduction

  1. (mat = Array[Subscript[a, ##] &, {3, 3}]) // MatrixForm Minors[mat] // MatrixForm Minors[mat, 1] // MatrixForm Minors[mat, 2] // MatrixForm Minors[mat, 3] // MatrixForm
  2. Simplify[Subscript[a, 1, 3]*(-Subscript[a, 1, 2] Subscript[a, 2, 1] + Subscript[a, 1, 1] Subscript[a, 2, 2]) + Subscript[a, 1, 1]*(-Subscript[a, 1, 3] Subscript[a, 2, 2] + Subscript[a, 1, 2] Subscript[a, 2, 3])]





3-term Plucker relation (Ptolemy relation)

  • \(\Delta _{i,k} \Delta _{j,l}=\Delta _{i,j} \Delta _{k,l}+\Delta _{i,l} \Delta _{j,k}\)
  • \(\Delta _{1,2}\Delta _{3,4}+\Delta _{1,4}\Delta _{2,3}=\Delta _{1,3}\Delta _{2,4}\)
  1. T := {{Subscript[a, 1, 1], Subscript[a, 1, 2], Subscript[a, 1, 3], Subscript[a, 1, 4]}, {Subscript[a, 2, 1], Subscript[a, 2, 2], Subscript[a, 2, 3], Subscript[a, 2, 4]}} Minor[i_, j_] := Det[{Transpose[T]i, Transpose[T]j}] Minor[1, 2]
  2. Simplify[Minor[1, 2] Minor[3, 4] + Minor[1, 4] Minor[2, 3]] Simplify[Minor[1, 3] Minor[2, 4]]



Plucker relations

  • \(\Delta _{1,2}\Delta _{12,13}=\Delta _{1,3}\Delta _{12,12}+\Delta _{1,1}\Delta _{12,23}\)
  1. \Delta _{12,12}\text{:=}-a_{1,2} a_{2,1}+a_{1,1} a_{2,2}\Delta _{12,23}\text{:=}-a_{1,3} a_{2,2}+a_{1,2} a_{2,3}\Delta _{1,3}\text{:=}a_{1,1}\Delta _{1,3}\text{:=}a_{1,3}\Delta _{1,3}\Delta _{12,12}+\Delta _{1,1}\Delta _{12,23}



Plucker coordinates of a Grassmannian

memo

메타데이터

위키데이터