"Slater 37"의 두 판 사이의 차이
		
		
		
		
		
		둘러보기로 가기
		검색하러 가기
		
				
		
		
	
imported>Pythagoras0 잔글 (찾아 바꾸기 – “</h5>” 문자열을 “==” 문자열로)  | 
				Pythagoras0 (토론 | 기여)   | 
				||
| (사용자 2명의 중간 판 11개는 보이지 않습니다) | |||
| 1번째 줄: | 1번째 줄: | ||
| − | + | ==Note==  | |
| − | *  not checked  | + | *  not checked  | 
| − | + | ||
| − | + | ||
| − | + | ==type of identity==  | |
* [[Slater list|Slater's list]]  | * [[Slater list|Slater's list]]  | ||
| − | *  I(17)  | + | *  I(17)  | 
| − | + | ||
| − | + | ||
| − | + | ==Bailey pair 1==  | |
| − | *  Use the folloing  | + | *  Use the folloing<math>\delta_n=\frac{(y)_n(z)_n x^n}{y^n z^n}</math>,  <math>\gamma_n=\frac{(x/y;q)_{\infty}(x/z;q)_{\infty}}{(x;q)_{\infty}(x/yz;q)_{\infty}}\frac{(y)_n(z)_n x^n}{(x/y)_{n}(x/z)_{n}y^n z^n}</math>  | 
| − | *  Specialize  | + | *  Specialize<math>x=q^{3}, y=-q, z\to\infty</math>.  | 
| − | *  Bailey pair  | + | *  Bailey pair<math>\delta_n=(-q)_{n}q^{\frac{n(n+3)}{2}}</math><math>\gamma_n=\frac{(-q^2)_{\infty}}{(q^3)_{\infty}}q^{\frac{n(n+3)}{2}}(1+q)</math>  | 
| − | + | ||
| − | + | ||
| − | + | ==Bailey pair 2==  | |
| − | *  Use the   | + | *  Use the following '''[Slater52-1] '''(4.2)    | 
| − | *  Specialize  | + | *  Specialize<math>a=q^{2},d=q^2,e=q</math>  | 
| − | *  Bailey pair  | + | *  Bailey pair<math>\alpha_{0}=1</math>, <math>\alpha_{2n}=(-1)^{n}q^{n(2n+1)}(1-q^{2n+1})/(1-q)</math>,<math>\alpha_{2n+1}=0</math><math>\beta_n=\sum_{r=0}^{n}\frac{\alpha_r}{(x)_{n-r}(q)_{n+r}}=\sum_{r=0}^{n}\frac{\alpha_r}{(q^{3})_{n-r}(q)_{n+r}}=\frac{(q^2,q^2)_{n}}{(q)_{n}(q^2)_{n}(q^3,q^2)_{n}}</math>  | 
| − | + | ||
| − | + | ||
| − | + | ==Bailey pair ==  | |
| − | *  Bailey pairs  | + | *  Bailey pairs  <math>\delta_n=(-q)_{n}q^{\frac{n(n+3)}{2}}</math><math>\gamma_n=\frac{(-q^2)_{\infty}}{(q^3)_{\infty}}q^{\frac{n(n+3)}{2}}(1+q)</math>  <math>\alpha_{0}=1</math>, <math>\alpha_{2n}=(-1)^{n}q^{n(2n+1)}(1-q^{2n+1})/(1-q)</math>,<math>\alpha_{2n+1}=0</math><math>\beta_n=\frac{(q^2,q^2)_{n}}{(q)_{n}(q^2)_{n}(q^3,q^2)_{n}}</math>  | 
| − | + | ||
| − | + | ||
| − | + | ==q-series identity==  | |
<math>\prod_{n=1}^{\infty}(1+q^n)=\sum_{n=1}^{\infty}\frac{q^{n(n+1)/2}}{(q)_n}\sim \frac{1}{\sqrt{2}}\exp(\frac{\pi^2}{12t}+\frac{t}{24})</math>  | <math>\prod_{n=1}^{\infty}(1+q^n)=\sum_{n=1}^{\infty}\frac{q^{n(n+1)/2}}{(q)_n}\sim \frac{1}{\sqrt{2}}\exp(\frac{\pi^2}{12t}+\frac{t}{24})</math>  | ||
| − | * [[Bailey pair and lemma|Bailey's lemma]]  | + | * [[Bailey pair and lemma|Bailey's lemma]]<math>\sum_{n=0}^{\infty}\alpha_n\gamma_{n}=\sum_{n=0}^{\infty}\beta_n\delta_{n}</math><math>\sum_{n=0}^{\infty}\alpha_n\gamma_{n}=\frac{(-q)_{\infty}}{(q)_{\infty}}\sum_{n=0}^{\infty}(-1)^{n}(q^{\frac{3n^2+n}{2}}-q^{\frac{3n^2+5n+2}{2}})=(-q)_{\infty}</math> ([http://pythagoras0.springnote.com/pages/4145675 오일러의 오각수정리(pentagonal number theorem)] was used to verify this)<math>\sum_{n=0}^{\infty}\beta_n\delta_{n}=\sum_{n=0}^{\infty}\frac{q^{\frac{n(n+1)}{2}}}{(q)_{n}}</math>  | 
| − | * [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]  | + | * [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]  | 
** http://www.research.att.com/~njas/sequences/?q=  | ** http://www.research.att.com/~njas/sequences/?q=  | ||
| − | + | ||
| − | + | ||
| − | + | ==Bethe type equation (cyclotomic equation)==  | |
| − | + | Let <math>\sum_{n=0}^{\infty}\frac{q^{n(an+b)/2}}{  | |
  \prod_{j=1}^{r}(q^{c_j};q^{d_j})_n^{e_j}}=\sum_{N=0}^{\infty} a_N q^{N}</math>.  |   \prod_{j=1}^{r}(q^{c_j};q^{d_j})_n^{e_j}}=\sum_{N=0}^{\infty} a_N q^{N}</math>.  | ||
| − | + | Then <math>\prod_{j=1}^{r}(1-x^{d_j})^{e_j}=x^a</math>  has a unique root <math>0<\mu<1</math>. We get  | |
<math>\log^2 a_N \sim 4N\sum_{j=1}^{r}\frac{e_j}{d_j}L(1-\mu^{d_j})</math>  | <math>\log^2 a_N \sim 4N\sum_{j=1}^{r}\frac{e_j}{d_j}L(1-\mu^{d_j})</math>  | ||
| − | + | ||
a=1,d=1,e=1  | a=1,d=1,e=1  | ||
| − | + | The equation  becomes <math>1-x=x</math>.  | |
<math>4L(\frac{1}{2})=\frac{1}{2}(\frac{2}{3}\pi^2)=\frac{1}{3}\pi^2</math>  | <math>4L(\frac{1}{2})=\frac{1}{2}(\frac{2}{3}\pi^2)=\frac{1}{3}\pi^2</math>  | ||
| − | + | ||
| − | + | ||
| − | + | ==dilogarithm identity==  | |
<math>L(\frac{1}{2})=\frac{1}{12}\pi^2</math>  | <math>L(\frac{1}{2})=\frac{1}{12}\pi^2</math>  | ||
| − | + | ||
| − | + | ||
| − | + | ==related items==  | |
| − | * [[asymptotic analysis of basic hypergeometric series]]  | + | * [[asymptotic analysis of basic hypergeometric series]]  | 
| − | + | ||
| − | + | ||
| − | + | ==articles==    | |
| + | * [http://www.combinatorics.org/Surveys/ds15.pdf Rogers-Ramanujan-Slater Type identities]  | ||
| + | **  McLaughlin, 2008  | ||
| + | * [http://dx.doi.org/10.1112%2Fplms%2Fs2-54.2.147 Further identities of the Rogers-Ramanujan type]  | ||
| + | **  Slater, L. J. (1952),  Proceedings of the London Mathematical Society. Second Series 54: 147–167  | ||
| + | * [http://dx.doi.org/10.1112/plms/s2-53.6.460 A New Proof of Rogers's Transformations of Infinite Series]  | ||
| + | **  Slater, L. J. (1952), Proc. London Math. Soc. 1951 s2-53: 460-475  | ||
| − | + | [[분류:개인노트]]  | |
| − | + | [[분류:math and physics]]  | |
| − | + | [[분류:migrate]]  | |
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
2020년 12월 28일 (월) 04:15 기준 최신판
Note
- not checked
 
 
 
type of identity
- Slater's list
 - I(17)
 
 
 
Bailey pair 1
- Use the folloing\(\delta_n=\frac{(y)_n(z)_n x^n}{y^n z^n}\), \(\gamma_n=\frac{(x/y;q)_{\infty}(x/z;q)_{\infty}}{(x;q)_{\infty}(x/yz;q)_{\infty}}\frac{(y)_n(z)_n x^n}{(x/y)_{n}(x/z)_{n}y^n z^n}\)
 - Specialize\(x=q^{3}, y=-q, z\to\infty\).
 - Bailey pair\(\delta_n=(-q)_{n}q^{\frac{n(n+3)}{2}}\)\(\gamma_n=\frac{(-q^2)_{\infty}}{(q^3)_{\infty}}q^{\frac{n(n+3)}{2}}(1+q)\)
 
 
 
Bailey pair 2
- Use the following [Slater52-1] (4.2)
 - Specialize\(a=q^{2},d=q^2,e=q\)
 - Bailey pair\(\alpha_{0}=1\), \(\alpha_{2n}=(-1)^{n}q^{n(2n+1)}(1-q^{2n+1})/(1-q)\),\(\alpha_{2n+1}=0\)\(\beta_n=\sum_{r=0}^{n}\frac{\alpha_r}{(x)_{n-r}(q)_{n+r}}=\sum_{r=0}^{n}\frac{\alpha_r}{(q^{3})_{n-r}(q)_{n+r}}=\frac{(q^2,q^2)_{n}}{(q)_{n}(q^2)_{n}(q^3,q^2)_{n}}\)
 
 
 
Bailey pair
- Bailey pairs \(\delta_n=(-q)_{n}q^{\frac{n(n+3)}{2}}\)\(\gamma_n=\frac{(-q^2)_{\infty}}{(q^3)_{\infty}}q^{\frac{n(n+3)}{2}}(1+q)\) \(\alpha_{0}=1\), \(\alpha_{2n}=(-1)^{n}q^{n(2n+1)}(1-q^{2n+1})/(1-q)\),\(\alpha_{2n+1}=0\)\(\beta_n=\frac{(q^2,q^2)_{n}}{(q)_{n}(q^2)_{n}(q^3,q^2)_{n}}\)
 
 
 
q-series identity
\(\prod_{n=1}^{\infty}(1+q^n)=\sum_{n=1}^{\infty}\frac{q^{n(n+1)/2}}{(q)_n}\sim \frac{1}{\sqrt{2}}\exp(\frac{\pi^2}{12t}+\frac{t}{24})\)
- Bailey's lemma\(\sum_{n=0}^{\infty}\alpha_n\gamma_{n}=\sum_{n=0}^{\infty}\beta_n\delta_{n}\)\(\sum_{n=0}^{\infty}\alpha_n\gamma_{n}=\frac{(-q)_{\infty}}{(q)_{\infty}}\sum_{n=0}^{\infty}(-1)^{n}(q^{\frac{3n^2+n}{2}}-q^{\frac{3n^2+5n+2}{2}})=(-q)_{\infty}\) (오일러의 오각수정리(pentagonal number theorem) was used to verify this)\(\sum_{n=0}^{\infty}\beta_n\delta_{n}=\sum_{n=0}^{\infty}\frac{q^{\frac{n(n+1)}{2}}}{(q)_{n}}\)
 
 
 
Bethe type equation (cyclotomic equation)
Let \(\sum_{n=0}^{\infty}\frac{q^{n(an+b)/2}}{ \prod_{j=1}^{r}(q^{c_j};q^{d_j})_n^{e_j}}=\sum_{N=0}^{\infty} a_N q^{N}\).
Then \(\prod_{j=1}^{r}(1-x^{d_j})^{e_j}=x^a\) has a unique root \(0<\mu<1\). We get
\(\log^2 a_N \sim 4N\sum_{j=1}^{r}\frac{e_j}{d_j}L(1-\mu^{d_j})\)
 
a=1,d=1,e=1
The equation becomes \(1-x=x\).
\(4L(\frac{1}{2})=\frac{1}{2}(\frac{2}{3}\pi^2)=\frac{1}{3}\pi^2\)
 
 
dilogarithm identity
\(L(\frac{1}{2})=\frac{1}{12}\pi^2\)
 
 
 
 
articles
- Rogers-Ramanujan-Slater Type identities
- McLaughlin, 2008
 
 - Further identities of the Rogers-Ramanujan type
- Slater, L. J. (1952), Proceedings of the London Mathematical Society. Second Series 54: 147–167
 
 - A New Proof of Rogers's Transformations of Infinite Series
- Slater, L. J. (1952), Proc. London Math. Soc. 1951 s2-53: 460-475