"Non-unitary c(2,k+2) minimal models"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
(피타고라스님이 이 페이지의 위치를 <a href="/pages/3918271">minimal models</a>페이지로 이동하였습니다.)
 
(사용자 3명의 중간 판 16개는 보이지 않습니다)
1번째 줄: 1번째 줄:
 +
==non-unitary <math>c(2,k+2)</math> minimal models==
  
 +
*  central charge<math>c(2,k+2)=1-\frac{3k^2}{k+2}</math><math>k \geq 3</math>, odd
 +
*  primary fields have conformal dimensions<math>h_j=-\frac{j(k-j)}{2(k+2)}</math>, <math>j\in \{0,1,\cdots,[k/2]\}</math>
 +
*  effective central charge<math>c_{eff}=\frac{k-1}{k+2}</math>
 +
*  dilogarithm identity
 +
:<math>\sum_{i=1}^{k-1}L(\frac{\sin^2\frac{\pi}{k+2}}{\sin^2\frac{(i+1)\pi}{k+2}})=\frac{2(k-1)}{k+2}\cdot \frac{\pi^2}{6}</math>
 +
*  character functions<math>\chi_j(\tau)=q^{h_j-c/24}\prod_{n\neq 0,\pm(j+1)}(1-q^n)^{-1}</math>
 +
*  to understand the factor <math>q^{h-c/24}</math>, look at the [[finite size effect]] page also
 +
*  quantum dimension and there recurrence relation<math>d_i=\frac{\sin \frac{(i+1)\pi}{k+2}}{\sin \frac{\pi}{k+2}}</math> satisfies<math>d_i^2=1+d_{i-1}d_{i+1}</math> where <math>d_0=1</math>, <math>d_k=1</math>
 +
 +
 +
 +
#  (*choose k for c (2,k+2) minimal model*)k := 11 (*define Rogers dilogarithm*) L[x_] := PolyLog[2, x] + 1/2 Log[x] Log[1 - x] (*quantum dimension for minimal models*) f[k_, i_] := (Sin[Pi/(k + 2)]/Sin[(i + 1) Pi/(k + 2)])^2 (*effective central charge*) g[k_] := (k*Pi^2)/(2 (k + 2)) (*compare the results*) N[Sum[L[f[k, i]], {i, 1, k - 1}] + Pi^2/6, 10] N[g[k], 10] d[k_, i_] := Sin[(i + 1) Pi/(k + 2)]/Sin[Pi/(k + 2)] Table[{i, d[k, i]}, {i, 1, k}] // TableForm Table[{i, N[(d[k, i])^2 - (1 + d[k, i - 1]*d[k, i + 1]), 10]}, {i, 1,    k}] // TableForm
 +
 +
 +
==related items==
 +
 +
* [[Andrews-Gordon identity]]
 +
 +
 +
 +
==computational resource==
 +
* https://docs.google.com/file/d/0B8XXo8Tve1cxdXRlbU40OExkeW8/edit
 +
 +
 +
 +
 +
[[분류:conformal field theory]]
 +
[[분류:math and physics]]
 +
[[분류:minimal models]]
 +
[[분류:migrate]]

2020년 12월 28일 (월) 05:17 기준 최신판

non-unitary \(c(2,k+2)\) minimal models

  • central charge\(c(2,k+2)=1-\frac{3k^2}{k+2}\)\(k \geq 3\), odd
  • primary fields have conformal dimensions\(h_j=-\frac{j(k-j)}{2(k+2)}\), \(j\in \{0,1,\cdots,[k/2]\}\)
  • effective central charge\(c_{eff}=\frac{k-1}{k+2}\)
  • dilogarithm identity

\[\sum_{i=1}^{k-1}L(\frac{\sin^2\frac{\pi}{k+2}}{\sin^2\frac{(i+1)\pi}{k+2}})=\frac{2(k-1)}{k+2}\cdot \frac{\pi^2}{6}\]

  • character functions\(\chi_j(\tau)=q^{h_j-c/24}\prod_{n\neq 0,\pm(j+1)}(1-q^n)^{-1}\)
  • to understand the factor \(q^{h-c/24}\), look at the finite size effect page also
  • quantum dimension and there recurrence relation\(d_i=\frac{\sin \frac{(i+1)\pi}{k+2}}{\sin \frac{\pi}{k+2}}\) satisfies\(d_i^2=1+d_{i-1}d_{i+1}\) where \(d_0=1\), \(d_k=1\)


  1. (*choose k for c (2,k+2) minimal model*)k := 11 (*define Rogers dilogarithm*) L[x_] := PolyLog[2, x] + 1/2 Log[x] Log[1 - x] (*quantum dimension for minimal models*) f[k_, i_] := (Sin[Pi/(k + 2)]/Sin[(i + 1) Pi/(k + 2)])^2 (*effective central charge*) g[k_] := (k*Pi^2)/(2 (k + 2)) (*compare the results*) N[Sum[L[f[k, i]], {i, 1, k - 1}] + Pi^2/6, 10] N[g[k], 10] d[k_, i_] := Sin[(i + 1) Pi/(k + 2)]/Sin[Pi/(k + 2)] Table[{i, d[k, i]}, {i, 1, k}] // TableForm Table[{i, N[(d[k, i])^2 - (1 + d[k, i - 1]*d[k, i + 1]), 10]}, {i, 1, k}] // TableForm


related items


computational resource