"Monodromy matrix"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
 
(사용자 2명의 중간 판 8개는 보이지 않습니다)
1번째 줄: 1번째 줄:
 
==introduction==
 
==introduction==
 
* monodromy matrix
 
* monodromy matrix
$$
+
:<math>
L=
+
T(\lambda)=
 
\left(
 
\left(
 
\begin{array}{cc}
 
\begin{array}{cc}
  A & B \\
+
  A(\lambda ) & B(\lambda ) \\
  C & D
+
  C(\lambda ) & D(\lambda )
 
\end{array}
 
\end{array}
 
\right)
 
\right)
$$
+
</math>
* YBE implies the following relation
+
* describes the transport of the spin around the circular chain
$$
+
* YBE implies the following [[RTT=TTR relation in spin chains]]
RLL=LLR
+
:<math>
$$
+
RTT=TTR
 
+
</math>
 
* transfer matrix
 
* transfer matrix
$$
+
:<math>
T=\operatorname{tr} L=A+D
+
t=\operatorname{tr} T=A+D
$$ 
+
</math>
  
  
 +
==definition==
 +
* <math>\lambda</math> : spectral parameter
 +
* <math>R(\lambda)</math> : [[R-matrix]]
 +
* define the Lax matrix
 +
:<math>
 +
\begin{eqnarray}
 +
L_{0 n}(\lambda) &=& R_{0 n}(\lambda - {i\over 2}) \\
 +
&=& \left( \begin{array}{cc}
 +
\alpha_{n}        & \beta_{n}  \\
 +
\gamma_{n}        & \delta_{n}
 +
\end{array} \right)
 +
\,, \qquad n = 1 \,, 2 \,, \ldots \,, N \,,
 +
\end{eqnarray}
 +
</math>
 +
where
 +
<math>\alpha_{n}</math>, <math>\beta_{n}</math>, <math>\gamma_{n}</math>, <math>\delta_{n}</math> are
 +
operators on
 +
:<math>
 +
\begin{eqnarray}
 +
\stackrel{\stackrel{1}{\downarrow}}{V} \otimes \cdots \otimes
 +
\stackrel{\stackrel{n}{\downarrow}}{V} \otimes \cdots \otimes
 +
\stackrel{\stackrel{N}{\downarrow}}{V}
 +
\end{eqnarray}
 +
</math>
 +
* monodromy matrix
 +
:<math>
 +
\begin{eqnarray}
 +
T_{0}(\lambda) &=& L_{0 N}(\lambda) \cdots L_{0 1}(\lambda) \\
 +
&=&
 +
\left(\begin{array}{cc}
 +
\alpha_{N} & \beta_{N} \\
 +
\gamma_{N} & \delta_{N}
 +
\end{array} \right)
 +
\cdots
 +
\left(\begin{array}{cc}
 +
\alpha_{1} & \beta_{1} \\
 +
\gamma_{1} & \delta_{1}
 +
\end{array} \right) \\
 +
&=&
 +
\left(
 +
\begin{array}{cc}
 +
A(\lambda ) & B(\lambda ) \\
 +
C(\lambda ) & D(\lambda )
 +
\end{array}
 +
\right)
 +
\label{monodromy}
 +
\end{eqnarray}
 +
</math>
 +
where
 +
<math>A(\lambda ) ,B(\lambda ) , C(\lambda ) , D(\lambda )</math> are operators acting on <math>V^{\otimes N}</math>
  
==history==
 
 
* http://www.google.com/search?hl=en&tbs=tl:1&q=
 
 
 
 
  
 
 
  
 
==related items==
 
==related items==
 +
* [[RTT=TTR relation in spin chains]]
 +
* [[A Spin Chain Primer]]
 +
* [[Transfer matrix in statistical mechanics]]
  
 
 
  
 
+
==computational resource==
 +
* https://docs.google.com/file/d/0B8XXo8Tve1cxNWJ5NWNIXzRieGc/edit
 +
  
 
[[분류:integrable systems]]
 
[[분류:integrable systems]]
 
[[분류:math and physics]]
 
[[분류:math and physics]]
[[분류:math and physics]]
+
[[분류:migrate]]

2020년 12월 28일 (월) 05:19 기준 최신판

introduction

  • monodromy matrix

\[ T(\lambda)= \left( \begin{array}{cc} A(\lambda ) & B(\lambda ) \\ C(\lambda ) & D(\lambda ) \end{array} \right) \]

\[ RTT=TTR \]

  • transfer matrix

\[ t=\operatorname{tr} T=A+D \]


definition

  • \(\lambda\) : spectral parameter
  • \(R(\lambda)\) : R-matrix
  • define the Lax matrix

\[ \begin{eqnarray} L_{0 n}(\lambda) &=& R_{0 n}(\lambda - {i\over 2}) \\ &=& \left( \begin{array}{cc} \alpha_{n} & \beta_{n} \\ \gamma_{n} & \delta_{n} \end{array} \right) \,, \qquad n = 1 \,, 2 \,, \ldots \,, N \,, \end{eqnarray} \] where \(\alpha_{n}\), \(\beta_{n}\), \(\gamma_{n}\), \(\delta_{n}\) are operators on \[ \begin{eqnarray} \stackrel{\stackrel{1}{\downarrow}}{V} \otimes \cdots \otimes \stackrel{\stackrel{n}{\downarrow}}{V} \otimes \cdots \otimes \stackrel{\stackrel{N}{\downarrow}}{V} \end{eqnarray} \]

  • monodromy matrix

\[ \begin{eqnarray} T_{0}(\lambda) &=& L_{0 N}(\lambda) \cdots L_{0 1}(\lambda) \\ &=& \left(\begin{array}{cc} \alpha_{N} & \beta_{N} \\ \gamma_{N} & \delta_{N} \end{array} \right) \cdots \left(\begin{array}{cc} \alpha_{1} & \beta_{1} \\ \gamma_{1} & \delta_{1} \end{array} \right) \\ &=& \left( \begin{array}{cc} A(\lambda ) & B(\lambda ) \\ C(\lambda ) & D(\lambda ) \end{array} \right) \label{monodromy} \end{eqnarray} \] where \(A(\lambda ) ,B(\lambda ) , C(\lambda ) , D(\lambda )\) are operators acting on \(V^{\otimes N}\)


related items


computational resource