"Slater 83"의 두 판 사이의 차이
		
		
		
		
		
		둘러보기로 가기
		검색하러 가기
		
				
		
		
	
imported>Pythagoras0 잔글 (찾아 바꾸기 – “4909919” 문자열을 “” 문자열로)  | 
				Pythagoras0 (토론 | 기여)   | 
				||
| (사용자 2명의 중간 판 3개는 보이지 않습니다) | |||
| 1번째 줄: | 1번째 줄: | ||
==Note==  | ==Note==  | ||
| − | * [[Slater 86]]  | + | * [[Slater 86]]  | 
| − | + | ||
| − | + | ||
==type of identity==  | ==type of identity==  | ||
* [[Slater list|Slater's list]]  | * [[Slater list|Slater's list]]  | ||
| − | *   | + | *     | 
| − | + | ||
| − | + | ||
==Bailey pair 1==  | ==Bailey pair 1==  | ||
| − | *  Use the folloing  | + | *  Use the folloing<math>\delta_n=\frac{(y)_n(z)_n x^n}{y^n z^n}</math>,  <math>\gamma_n=\frac{(x/y;q)_{\infty}(x/z;q)_{\infty}}{(x;q)_{\infty}(x/yz;q)_{\infty}}\frac{(y)_n(z)_n x^n}{(x/y)_{n}(x/z)_{n}y^n z^n}</math>  | 
| − | *  Specialize  | + | *  Specialize<math>x=q^2, y=-q, z\to\infty</math>.  | 
| − | *  Bailey pair  | + | *  Bailey pair<math>\delta_n=(-q)_{n}q^{\frac{n(n+1)}{2}}</math><math>\gamma_n=\frac{(-q)_{\infty}}{(q^2)_{\infty}}q^{\frac{n(n+1)}{2}}</math>  | 
| − | + | ||
| − | + | ||
| − | + | ||
==Bailey pair 2==  | ==Bailey pair 2==  | ||
| − | *  Use the   | + | *  Use the following <math>\sum_{r=0}^{n}\frac{(1-aq^{2r})(-1)^{r}q^{\frac{1}{2}(r^2+r)}(a)_{r}(c)_{r}(d)_{r}a^{r}}{(a)_{n+r+1}(q)_{n-r}(q)_{r}(aq/c)_{r}(aq/d)_{r}c^{r}d^{r}}=\frac{(aq/cd)_{n}}{(q)_{n}(aq/c)_{n}(aq/d)_{n}}</math>  | 
| − | *  Specialize  | + | *  Specialize<math>a=q,c=-q,d=\infty</math>  | 
| − | *  Bailey pair  | + | *  Bailey pair<math>\alpha_{0}=1</math>, <math>\alpha_{n}=(-1)^{n}q^{n^2}(1-q^{2n+1})/(1-q)</math><math>\beta_n=\sum_{r=0}^{n}\frac{\alpha_r}{(x)_{n-r}(q)_{n+r}}=\sum_{r=0}^{n}\frac{\alpha_r}{(q^{2})_{n-r}(q)_{n+r}}=\frac{1}{(q)_{n}(-q)_{n}}</math>  | 
| − | + | ||
| − | + | ||
| − | ==Bailey   | + | ==Bailey pair ==  | 
| − | *  Bailey pairs  | + | *  Bailey pairs<math>\delta_n=(-q)_{n}q^{\frac{n(n+1)}{2}}</math><math>\gamma_n=\frac{(-q)_{\infty}}{(q^2)_{\infty}}q^{\frac{n(n+1)}{2}}</math><math>\alpha_{n}=(-1)^{n}q^{n^2}(1-q^{2n+1})/(1-q)</math><math>\beta_n=\frac{1}{(q)_{n}(-q)_{n}}</math>  | 
| − | + | ||
| − | + | ||
| − | + | ||
==q-series identity==  | ==q-series identity==  | ||
| 54번째 줄: | 54번째 줄: | ||
<math>(q)_{2n}=(q;q^2)_{n}(q^2;q^2)_{n}</math>  | <math>(q)_{2n}=(q;q^2)_{n}(q^2;q^2)_{n}</math>  | ||
| − | * [[Bailey pair and lemma|Bailey's lemma]]  | + | * [[Bailey pair and lemma|Bailey's lemma]]<math>\sum_{n=0}^{\infty}\alpha_n\gamma_{n}=\sum_{n=0}^{\infty}\beta_n\delta_{n}</math><math>\sum_{n=0}^{\infty}\beta_n\delta_{n}=\sum_{n=0}^{\infty}\frac{q^{\frac{n(n+1)}{2}}}{(q)_{n}}</math>  | 
| − | * [http://www.research.att.com/~njas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]  | + | * [http://www.research.att.com/~njas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]  | 
** http://www.research.att.com/~njas/sequences/?q=  | ** http://www.research.att.com/~njas/sequences/?q=  | ||
| − | + | ||
| − | + | ||
==Bethe type equation (cyclotomic equation)==  | ==Bethe type equation (cyclotomic equation)==  | ||
| − | + | Let ''''''<math>\sum_{n=0}^{\infty}\frac{q^{n(an+b)/2}}{  | |
  \prod_{j=1}^{r}(q^{c_j};q^{d_j})_n^{e_j}}=\sum_{N=0}^{\infty} a_N q^{N}</math>.  |   \prod_{j=1}^{r}(q^{c_j};q^{d_j})_n^{e_j}}=\sum_{N=0}^{\infty} a_N q^{N}</math>.  | ||
| − | + | Then <math>\prod_{j=1}^{r}(1-x^{d_j})^{e_j}=x^a</math>  has a unique root <math>0<\mu<1</math>. We get  | |
<math>\log^2 a_N \sim 4N\sum_{j=1}^{r}\frac{e_j}{d_j}L(1-\mu^{d_j})</math>  | <math>\log^2 a_N \sim 4N\sum_{j=1}^{r}\frac{e_j}{d_j}L(1-\mu^{d_j})</math>  | ||
| − | + | ||
a=4,d_1=2.d_2=2,e=1  | a=4,d_1=2.d_2=2,e=1  | ||
| − | + | The equation  becomes <math>(1-x^{2})^{2}=x^{4}</math>.  | |
<math>x^2=\frac{1}{2}</math>  | <math>x^2=\frac{1}{2}</math>  | ||
| 82번째 줄: | 82번째 줄: | ||
<math>4L(\frac{1}{2})=\frac{1}{2}(\frac{2}{3}\pi^2)=\frac{1}{3}\pi^2</math>  | <math>4L(\frac{1}{2})=\frac{1}{2}(\frac{2}{3}\pi^2)=\frac{1}{3}\pi^2</math>  | ||
| − | + | ||
| − | + | ||
==dilogarithm identity==  | ==dilogarithm identity==  | ||
| 90번째 줄: | 90번째 줄: | ||
<math>L(\frac{1}{2})=\frac{1}{12}\pi^2</math>  | <math>L(\frac{1}{2})=\frac{1}{12}\pi^2</math>  | ||
| − | + | ||
| − | + | ||
| − | ==  | + | ==articles==  | 
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | + | * [http://arxiv.org/abs/math-ph/0406042 Hypergeometric generating function of <math>L</math>-function, Slater's identities, and quantum invariant]  | |
| − | + | ** Kazuhiro Hikami, Anatol N. Kirillov, 2004   | |
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
[[분류:개인노트]]  | [[분류:개인노트]]  | ||
[[분류:math and physics]]  | [[분류:math and physics]]  | ||
| + | [[분류:migrate]]  | ||
2020년 12월 28일 (월) 04:24 기준 최신판
Note
 
 
type of identity
 
 
Bailey pair 1
- Use the folloing\(\delta_n=\frac{(y)_n(z)_n x^n}{y^n z^n}\), \(\gamma_n=\frac{(x/y;q)_{\infty}(x/z;q)_{\infty}}{(x;q)_{\infty}(x/yz;q)_{\infty}}\frac{(y)_n(z)_n x^n}{(x/y)_{n}(x/z)_{n}y^n z^n}\)
 - Specialize\(x=q^2, y=-q, z\to\infty\).
 - Bailey pair\(\delta_n=(-q)_{n}q^{\frac{n(n+1)}{2}}\)\(\gamma_n=\frac{(-q)_{\infty}}{(q^2)_{\infty}}q^{\frac{n(n+1)}{2}}\)
 
 
 
 
Bailey pair 2
- Use the following \(\sum_{r=0}^{n}\frac{(1-aq^{2r})(-1)^{r}q^{\frac{1}{2}(r^2+r)}(a)_{r}(c)_{r}(d)_{r}a^{r}}{(a)_{n+r+1}(q)_{n-r}(q)_{r}(aq/c)_{r}(aq/d)_{r}c^{r}d^{r}}=\frac{(aq/cd)_{n}}{(q)_{n}(aq/c)_{n}(aq/d)_{n}}\)
 - Specialize\(a=q,c=-q,d=\infty\)
 - Bailey pair\(\alpha_{0}=1\), \(\alpha_{n}=(-1)^{n}q^{n^2}(1-q^{2n+1})/(1-q)\)\(\beta_n=\sum_{r=0}^{n}\frac{\alpha_r}{(x)_{n-r}(q)_{n+r}}=\sum_{r=0}^{n}\frac{\alpha_r}{(q^{2})_{n-r}(q)_{n+r}}=\frac{1}{(q)_{n}(-q)_{n}}\)
 
 
 
Bailey pair
- Bailey pairs\(\delta_n=(-q)_{n}q^{\frac{n(n+1)}{2}}\)\(\gamma_n=\frac{(-q)_{\infty}}{(q^2)_{\infty}}q^{\frac{n(n+1)}{2}}\)\(\alpha_{n}=(-1)^{n}q^{n^2}(1-q^{2n+1})/(1-q)\)\(\beta_n=\frac{1}{(q)_{n}(-q)_{n}}\)
 
 
 
 
q-series identity
\(\sum_{n=0}^{\infty}\frac{q^{2n^{2}}}{ (q)_{2n}}=\frac{(q^{1};q^{8})_{\infty}(q^{7};q^{8})_{\infty}(q^{8};q^{8})_{\infty}(q^{6};q^{16})_{\infty}(q^{10};q^{16})_{\infty}}{(q)_{\infty}}\)
\((q)_{2n}=(q;q^2)_{n}(q^2;q^2)_{n}\)
- Bailey's lemma\(\sum_{n=0}^{\infty}\alpha_n\gamma_{n}=\sum_{n=0}^{\infty}\beta_n\delta_{n}\)\(\sum_{n=0}^{\infty}\beta_n\delta_{n}=\sum_{n=0}^{\infty}\frac{q^{\frac{n(n+1)}{2}}}{(q)_{n}}\)
 
 
 
Bethe type equation (cyclotomic equation)
Let '\(\sum_{n=0}^{\infty}\frac{q^{n(an+b)/2}}{ \prod_{j=1}^{r}(q^{c_j};q^{d_j})_n^{e_j}}=\sum_{N=0}^{\infty} a_N q^{N}\).
Then \(\prod_{j=1}^{r}(1-x^{d_j})^{e_j}=x^a\) has a unique root \(0<\mu<1\). We get
\(\log^2 a_N \sim 4N\sum_{j=1}^{r}\frac{e_j}{d_j}L(1-\mu^{d_j})\)
 
a=4,d_1=2.d_2=2,e=1
The equation becomes \((1-x^{2})^{2}=x^{4}\).
\(x^2=\frac{1}{2}\)
\(4L(\frac{1}{2})=\frac{1}{2}(\frac{2}{3}\pi^2)=\frac{1}{3}\pi^2\)
 
 
dilogarithm identity
\(L(\frac{1}{2})=\frac{1}{12}\pi^2\)
 
 
articles
- Hypergeometric generating function of \(L\)-function, Slater's identities, and quantum invariant
- Kazuhiro Hikami, Anatol N. Kirillov, 2004