"Half-integral weight modular forms"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
(Pythagoras0 (토론)의 48551판 편집을 되돌림)
태그: 편집 취소
 
(사용자 2명의 중간 판 7개는 보이지 않습니다)
3번째 줄: 3번째 줄:
 
* modular forms of weight 1/2, which were classified by [http://en.wikipedia.org/wiki/Mock_theta_function#CITEREFSerreStark1977 Serre & Stark (1977)]
 
* modular forms of weight 1/2, which were classified by [http://en.wikipedia.org/wiki/Mock_theta_function#CITEREFSerreStark1977 Serre & Stark (1977)]
  
 
+
  
 
+
  
 
+
  
 
<math>\Gamma_0(N) = \left\{  \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbf{Z}) : \begin{pmatrix} a & b \\ c & d \end{pmatrix}  \equiv \begin{pmatrix} {*} & {*} \\ 0 & {*} \end{pmatrix} \pmod{N} \right\}</math>
 
<math>\Gamma_0(N) = \left\{  \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbf{Z}) : \begin{pmatrix} a & b \\ c & d \end{pmatrix}  \equiv \begin{pmatrix} {*} & {*} \\ 0 & {*} \end{pmatrix} \pmod{N} \right\}</math>
  
 
+
  
 
+
  
 
<math>\Gamma_0(4)</math>
 
<math>\Gamma_0(4)</math>
  
generated by <math>-I, T, ST^{-4}S</math>
+
generated by <math>-I, T, ST^{-4}S</math>
  
 
+
  
 
Define
 
Define
25번째 줄: 25번째 줄:
 
<math>\epsilon_d = \begin{cases} 1 \mbox{ if }d\equiv 1 \pmod{4}  \\i \mbox{ if } d\equiv  3 \pmod{4} \end{cases}</math>
 
<math>\epsilon_d = \begin{cases} 1 \mbox{ if }d\equiv 1 \pmod{4}  \\i \mbox{ if } d\equiv  3 \pmod{4} \end{cases}</math>
  
<math>\sqrt z</math> has branch in <math>(-\pi/2, \pi/2]</math>
+
<math>\sqrt z</math> has branch in <math>(-\pi/2, \pi/2]</math>
  
 
+
  
 
Define
 
Define
  
<math>j(\gamma, z)=(\frac{c}{d})\epsilon_d^{-1}\sqrt{cz+d}</math> for <math>\gamma \in \Gamma_0(4)</math>
+
<math>j(\gamma, z)=(\frac{c}{d})\epsilon_d^{-1}\sqrt{cz+d}</math> for <math>\gamma \in \Gamma_0(4)</math>
  
 
+
  
 
Check
 
Check
41번째 줄: 41번째 줄:
 
<math>j(\gamma, z)^2=\begin{cases} {cz+d} \mbox{ if }d\equiv 1 \pmod{4}  \\ -(cz+d) \mbox{ if } d\equiv  3 \pmod{4} \end{cases}</math>
 
<math>j(\gamma, z)^2=\begin{cases} {cz+d} \mbox{ if }d\equiv 1 \pmod{4}  \\ -(cz+d) \mbox{ if } d\equiv  3 \pmod{4} \end{cases}</math>
  
 
+
  
 
==action==
 
==action==
  
For <math>\xi=(\alpha, \phi(z))</math> and function <math>f</math> on the upper half plane
+
For <math>\xi=(\alpha, \phi(z))</math> and function <math>f</math> on the upper half plane
  
 
<math>f(z)|[\xi]_{k/2}:=f(\alpha z)\phi(z)^{-k}</math>
 
<math>f(z)|[\xi]_{k/2}:=f(\alpha z)\phi(z)^{-k}</math>
  
 
+
  
 
+
  
 
==unary theta functions of weight 1/2==
 
==unary theta functions of weight 1/2==
  
 
+
  
 
+
  
 
==theta functions of weight 3/2==
 
==theta functions of weight 3/2==
  
 
+
 
 +
==related items==
 +
* [[Kohnen-Waldspurger formula]]
 +
* [[Shimura correspondence]]
 +
  
 
==expositions==
 
==expositions==
68번째 줄: 72번째 줄:
  
 
==articles==
 
==articles==
* [[3413025/attachments/1586151|serre-stark_1976.pdf]], Modular functions of one variable VI
+
* Chen, Bin, and Jie Wu. “Non-Vanishing and Sign Changes of Hecke Eigenvalues for Half-Integral Weight Cusp Forms.” arXiv:1512.08400 [math], December 28, 2015. http://arxiv.org/abs/1512.08400.
 +
* Lau, Yuk-Kam, Emmanuel Royer, and Jie Wu. “Sign of Fourier Coefficients of Modular Forms of Half Integral Weight.” arXiv:1507.00518 [math], July 2, 2015. http://arxiv.org/abs/1507.00518.
 +
* http://www.worldscientific.com/doi/abs/10.1142/S1793042110003484
 +
* http://link.springer.com/article/10.1007%2Fs00013-013-0492-5
 +
* [[3413025/attachments/1586151|serre-stark_1976.pdf]], Modular functions of one variable VI
 
* [http://www.springerlink.com/content/u5k773288424205q/ Fourier coefficients of modular forms of half-integral weight]
 
* [http://www.springerlink.com/content/u5k773288424205q/ Fourier coefficients of modular forms of half-integral weight]
** Henryk Iwaniec, Inventiones Mathematicae, Volume 87, Number 2 / 1987년 6월
+
** Henryk Iwaniec, Inventiones Mathematicae, Volume 87, Number 2 / 1987년 6월
 
* [http://www.springerlink.com/content/p52527460724p36m/ Fourier coefficients of modular forms of half-integral weight]
 
* [http://www.springerlink.com/content/p52527460724p36m/ Fourier coefficients of modular forms of half-integral weight]
** W. Kohnen, Math. Ann. 271 (1985), 237–268.
+
** W. Kohnen, Math. Ann. 271 (1985), 237–268.
 +
 
 +
 
 
[[분류:개인노트]]
 
[[분류:개인노트]]
[[분류:math and physics]]
 
 
[[분류:math and physics]]
 
[[분류:math and physics]]
 
[[분류:math]]
 
[[분류:math]]
 
[[분류:automorphic forms]]
 
[[분류:automorphic forms]]
 +
[[분류:migrate]]

2020년 12월 28일 (월) 04:49 기준 최신판

introduction




\(\Gamma_0(N) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbf{Z}) : \begin{pmatrix} a & b \\ c & d \end{pmatrix} \equiv \begin{pmatrix} {*} & {*} \\ 0 & {*} \end{pmatrix} \pmod{N} \right\}\)



\(\Gamma_0(4)\)

generated by \(-I, T, ST^{-4}S\)


Define

\(\epsilon_d = \begin{cases} 1 \mbox{ if }d\equiv 1 \pmod{4} \\i \mbox{ if } d\equiv 3 \pmod{4} \end{cases}\)

\(\sqrt z\) has branch in \((-\pi/2, \pi/2]\)


Define

\(j(\gamma, z)=(\frac{c}{d})\epsilon_d^{-1}\sqrt{cz+d}\) for \(\gamma \in \Gamma_0(4)\)


Check

\(j(\alpha\beta,z)=j(\alpha,\beta z)j(\beta,z)\)

\(j(\gamma, z)^2=\begin{cases} {cz+d} \mbox{ if }d\equiv 1 \pmod{4} \\ -(cz+d) \mbox{ if } d\equiv 3 \pmod{4} \end{cases}\)


action

For \(\xi=(\alpha, \phi(z))\) and function \(f\) on the upper half plane

\(f(z)|[\xi]_{k/2}:=f(\alpha z)\phi(z)^{-k}\)



unary theta functions of weight 1/2

theta functions of weight 3/2

related items


expositions

articles