"그라스만 다양체"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
잔글 (찾아 바꾸기 – “<h5>” 문자열을 “==” 문자열로)
1번째 줄: 1번째 줄:
<h5>이 항목의 수학노트 원문주소</h5>
+
==이 항목의 수학노트 원문주소</h5>
  
 
 
 
 
5번째 줄: 5번째 줄:
 
 
 
 
  
<h5>개요</h5>
+
==개요</h5>
  
 
* Gr_{nk} = k-plane in n-space
 
* Gr_{nk} = k-plane in n-space
16번째 줄: 16번째 줄:
 
 
 
 
  
<h5>Plücker embedding</h5>
+
==Plücker embedding</h5>
  
 
* 그라스만 다양체를 사영공간으로 embedding
 
* 그라스만 다양체를 사영공간으로 embedding
26번째 줄: 26번째 줄:
 
 
 
 
  
<h5>Gr(2,4) 의 예</h5>
+
==Gr(2,4) 의 예</h5>
  
 
* 4차원 다양체
 
* 4차원 다양체
38번째 줄: 38번째 줄:
 
 
 
 
  
<h5>역사</h5>
+
==역사</h5>
  
 
 
 
 
49번째 줄: 49번째 줄:
 
 
 
 
  
<h5>메모</h5>
+
==메모</h5>
  
 
* http://blog.naver.com/PostView.nhn?blogId=isw0272&logNo=91747600&redirect=Dlog&widgetTypeCall=true
 
* http://blog.naver.com/PostView.nhn?blogId=isw0272&logNo=91747600&redirect=Dlog&widgetTypeCall=true
58번째 줄: 58번째 줄:
 
 
 
 
  
<h5>관련된 항목들</h5>
+
==관련된 항목들</h5>
  
 
*  
 
*  
66번째 줄: 66번째 줄:
 
 
 
 
  
<h5>수학용어번역</h5>
+
==수학용어번역</h5>
  
 
*  단어사전<br>
 
*  단어사전<br>
83번째 줄: 83번째 줄:
 
 
 
 
  
<h5>매스매티카 파일 및 계산 리소스</h5>
+
==매스매티카 파일 및 계산 리소스</h5>
  
 
*  
 
*  
98번째 줄: 98번째 줄:
 
 
 
 
  
<h5>사전 형태의 자료</h5>
+
==사전 형태의 자료</h5>
  
 
* http://ko.wikipedia.org/wiki/
 
* http://ko.wikipedia.org/wiki/
111번째 줄: 111번째 줄:
 
 
 
 
  
<h5>리뷰논문, 에세이, 강의노트</h5>
+
==리뷰논문, 에세이, 강의노트</h5>
  
 
* [http://bomber0.springnote.com/pages/# A Gentle Introduction to Grassmannians]
 
* [http://bomber0.springnote.com/pages/# A Gentle Introduction to Grassmannians]
119번째 줄: 119번째 줄:
 
 
 
 
  
<h5>관련논문</h5>
+
==관련논문</h5>
  
 
* http://www.jstor.org/action/doBasicSearch?Query=
 
* http://www.jstor.org/action/doBasicSearch?Query=
129번째 줄: 129번째 줄:
 
 
 
 
  
<h5>관련도서</h5>
+
==관련도서</h5>
  
 
*  도서내검색<br>
 
*  도서내검색<br>
 
** http://books.google.com/books?q=
 
** http://books.google.com/books?q=
 
** http://book.daum.net/search/contentSearch.do?query=
 
** http://book.daum.net/search/contentSearch.do?query=

2012년 10월 31일 (수) 12:55 판

==이 항목의 수학노트 원문주소

 

 

==개요

  • Gr_{nk} = k-plane in n-space
  • 실 그라스만 다양체
    \(Gr_{kn}(\mathbb{R}) = \{V\subset \mathbb{R}^n | \dim V = k\}\)
  • rank가 k인 k x n 행렬로 그라스만 다양체의 한 점을 표현할 수 있다

 

 

==Plücker embedding

  • 그라스만 다양체를 사영공간으로 embedding
  • \(Gr_{kn}(\mathbb{R}) \to \mathbb{P}^{N-1}\) 여기서 \(N=\binom{n}{k}\).
  • Plücker 좌표 \(\Delta_{I}(A)\) = determinant of submatrix of A with column set I

 

 

==Gr(2,4) 의 예

  • 4차원 다양체
  • 다양체 위의 한점은 다음과 같은 형태의 rank가 2인 행렬로 나타낼 수 있다
    \(\left( \begin{array}{cccc} a_{1,1} & a_{1,2} & a_{1,3} & a_{1,4} \\ a_{2,1} & a_{2,2} & a_{2,3} & a_{2,4} \end{array} \right)\)
  • Plücker embedding \(Gr_{24}(\mathbb{R}) \to \mathbb{P}^{5}\)
  • Plücker 좌표
    \(\begin{array}{l} \Delta _{1,2}=a_{1,1} a_{2,2}-a_{1,2} a_{2,1} \\ \Delta _{1,3}=a_{1,1} a_{2,3}-a_{1,3} a_{2,1} \\ \Delta _{1,4}=a_{1,1} a_{2,4}-a_{1,4} a_{2,1} \\ \Delta _{2,3}=a_{1,2} a_{2,3}-a_{1,3} a_{2,2} \\ \Delta _{2,4}=a_{1,2} a_{2,4}-a_{1,4} a_{2,2} \\ \Delta _{3,4}=a_{1,3} a_{2,4}-a_{1,4} a_{2,3} \end{array}\)
  • Plücker 관계식
    \(\Delta_{1,2}\Delta_{3,4}-\Delta_{1,3}\Delta_{2,4}+\Delta_{1,4}\Delta_{2,3}=0\) 또는 \(\Delta _{1,2}\Delta _{3,4}+\Delta _{1,4}\Delta _{2,3}=\Delta _{1,3}\Delta _{2,4}\)
    톨레미의 정리

 

 

==역사

 

 

 

==메모

 

 

==관련된 항목들

  •  

 

 

==수학용어번역

 

 

==매스매티카 파일 및 계산 리소스

 

 

==사전 형태의 자료

 

 

==리뷰논문, 에세이, 강의노트

 

 

==관련논문

 

 

==관련도서