"Jacobian Conjecture"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
imported>Pythagoras0 (새 문서: ==introduction== * Let y=F(z) a polynomial system in C^n. The Jacobian Conjecture (JC) states that F is invertible, and its inverse is polynomial, if and only if the determinant of th...) |
Pythagoras0 (토론 | 기여) |
||
(사용자 2명의 중간 판 3개는 보이지 않습니다) | |||
5번째 줄: | 5번째 줄: | ||
* De Goursac, A., A. Sportiello, and A. Tanasa. ‘Degree Reduction in the Jacobian Conjecture, a Combinatorial Quantum Field Theoretical Approach’. arXiv:1411.6558 [hep-Th], 17 November 2014. http://arxiv.org/abs/1411.6558. | * De Goursac, A., A. Sportiello, and A. Tanasa. ‘Degree Reduction in the Jacobian Conjecture, a Combinatorial Quantum Field Theoretical Approach’. arXiv:1411.6558 [hep-Th], 17 November 2014. http://arxiv.org/abs/1411.6558. | ||
+ | |||
+ | == memo == | ||
+ | |||
+ | * Yucai Su, Keller maps and 2-dimensional Jacobi conjecture, http://arxiv.org/abs/1603.01867v1 | ||
+ | [[분류:migrate]] | ||
+ | |||
+ | ==메타데이터== | ||
+ | ===위키데이터=== | ||
+ | * ID : [https://www.wikidata.org/wiki/Q2605695 Q2605695] | ||
+ | ===Spacy 패턴 목록=== | ||
+ | * [{'LOWER': 'jacobian'}, {'LEMMA': 'conjecture'}] |
2021년 2월 17일 (수) 01:01 기준 최신판
introduction
- Let y=F(z) a polynomial system in C^n. The Jacobian Conjecture (JC) states that F is invertible, and its inverse is polynomial, if and only if the determinant of the Jacobian matrix J_F(z) = (d F_j(z)/d z_i)_{i,j=1..n} is a non-zero constant.
- what is the set of automorphisms of an affine space? Jacobian conjecture is about the polynomial automorphisms whose jacobians are constant.
- De Goursac, A., A. Sportiello, and A. Tanasa. ‘Degree Reduction in the Jacobian Conjecture, a Combinatorial Quantum Field Theoretical Approach’. arXiv:1411.6558 [hep-Th], 17 November 2014. http://arxiv.org/abs/1411.6558.
memo
- Yucai Su, Keller maps and 2-dimensional Jacobi conjecture, http://arxiv.org/abs/1603.01867v1
메타데이터
위키데이터
- ID : Q2605695
Spacy 패턴 목록
- [{'LOWER': 'jacobian'}, {'LEMMA': 'conjecture'}]