"Gabriel's theorem"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
Pythagoras0 (토론 | 기여) |
|||
(사용자 2명의 중간 판 17개는 보이지 않습니다) | |||
1번째 줄: | 1번째 줄: | ||
− | + | ==statement== | |
− | + | ;thm (Gabriel) | |
− | |||
− | + | A connected quiver Q has finite type iff the underlying graph is a Dynkin diagram of (A,D,E) type. Moreoever there is a bijection between {indecomposable kQ-modules} and {positive roots} | |
+ | :<math>M \to \dim M</math> | ||
+ | where <math>\dim</math> is dimension vector | ||
− | + | ||
− | + | ||
+ | |||
+ | ==idea of proof== | ||
* define tilting functor | * define tilting functor | ||
* get Coxeter element | * get Coxeter element | ||
− | + | ||
+ | |||
+ | |||
+ | ==Kac theorem== | ||
+ | |||
+ | |||
− | + | ==related items== | |
+ | * [[Quiver representations]] | ||
+ | * [[Coxeter functor and transformation]] | ||
− | + | ==expositions== | |
+ | * Carroll, [http://www.math.missouri.edu/~carrollat/files/Quiver_Lecture.pdf Gabriel's Theorem] | ||
− | + | [[분류:개인노트]] | |
+ | [[분류:cluster algebra]] | ||
+ | [[분류:math and physics]] | ||
+ | [[분류:math]] | ||
+ | [[분류:migrate]] | ||
− | * | + | ==메타데이터== |
+ | ===위키데이터=== | ||
+ | * ID : [https://www.wikidata.org/wiki/Q5515505 Q5515505] | ||
+ | ===Spacy 패턴 목록=== | ||
+ | * [{'LOWER': 'gabriel'}, {'LOWER': "'s"}, {'LEMMA': 'theorem'}] |
2021년 2월 17일 (수) 01:06 기준 최신판
statement
- thm (Gabriel)
A connected quiver Q has finite type iff the underlying graph is a Dynkin diagram of (A,D,E) type. Moreoever there is a bijection between {indecomposable kQ-modules} and {positive roots} \[M \to \dim M\] where \(\dim\) is dimension vector
idea of proof
- define tilting functor
- get Coxeter element
Kac theorem
expositions
- Carroll, Gabriel's Theorem
메타데이터
위키데이터
- ID : Q5515505
Spacy 패턴 목록
- [{'LOWER': 'gabriel'}, {'LOWER': "'s"}, {'LEMMA': 'theorem'}]