"Gabriel's theorem"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
잔글 (찾아 바꾸기 – “</h5>” 문자열을 “==” 문자열로)
 
(사용자 2명의 중간 판 15개는 보이지 않습니다)
1번째 줄: 1번째 줄:
 
==statement==
 
==statement==
  
* \thm (Gabriel)
+
;thm (Gabriel)
*  A connected quiver Q has finite type iff the underlying graph is a Dynkin diagram of (A,D,E) type. Moreoever there is a bijection<br> {indecomposable kQ-modules} -> {positive roots}<br> M -> dim M (dimension vector)<br>
 
  
 
+
A connected quiver Q has finite type iff the underlying graph is a Dynkin diagram of (A,D,E) type. Moreoever there is a bijection between {indecomposable kQ-modules} and {positive roots}
 +
:<math>M \to \dim M</math>
 +
where <math>\dim</math> is dimension vector
  
 
+
 +
 
 +
  
 
==idea of proof==
 
==idea of proof==
13번째 줄: 16번째 줄:
 
* get Coxeter element
 
* get Coxeter element
  
 
+
 +
 
 +
 
 +
==Kac theorem==
  
 
 
  
 
 
  
==Kac theorem==
+
==related items==
 +
* [[Quiver representations]]
 +
* [[Coxeter functor and transformation]]
 +
 
 +
==expositions==
 +
* Carroll, [http://www.math.missouri.edu/~carrollat/files/Quiver_Lecture.pdf Gabriel's Theorem]
 +
 
 +
[[분류:개인노트]]
 +
[[분류:cluster algebra]]
 +
[[분류:math and physics]]
 +
[[분류:math]]
 +
[[분류:migrate]]
  
*
+
==메타데이터==
 +
===위키데이터===
 +
* ID :  [https://www.wikidata.org/wiki/Q5515505 Q5515505]
 +
===Spacy 패턴 목록===
 +
* [{'LOWER': 'gabriel'}, {'LOWER': "'s"}, {'LEMMA': 'theorem'}]

2021년 2월 17일 (수) 01:06 기준 최신판

statement

thm (Gabriel)

A connected quiver Q has finite type iff the underlying graph is a Dynkin diagram of (A,D,E) type. Moreoever there is a bijection between {indecomposable kQ-modules} and {positive roots} \[M \to \dim M\] where \(\dim\) is dimension vector



idea of proof

  • define tilting functor
  • get Coxeter element



Kac theorem

related items

expositions

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LOWER': 'gabriel'}, {'LOWER': "'s"}, {'LEMMA': 'theorem'}]