"Gabriel's theorem"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
 
(사용자 2명의 중간 판 5개는 보이지 않습니다)
3번째 줄: 3번째 줄:
 
;thm (Gabriel)
 
;thm (Gabriel)
  
A connected quiver Q has finite type iff the underlying graph is a Dynkin diagram of (A,D,E) type. Moreoever there is a bijection between {indecomposable kQ-modules} and {positive roots}
+
A connected quiver Q has finite type iff the underlying graph is a Dynkin diagram of (A,D,E) type. Moreoever there is a bijection between {indecomposable kQ-modules} and {positive roots}
$$M \to \dim M$$
+
:<math>M \to \dim M</math>
where $\dim$ is dimension vector
+
where <math>\dim</math> is dimension vector
  
 
+
  
 
+
  
 
==idea of proof==
 
==idea of proof==
16번째 줄: 16번째 줄:
 
* get Coxeter element
 
* get Coxeter element
  
 
+
  
  
25번째 줄: 25번째 줄:
 
==related items==
 
==related items==
 
* [[Quiver representations]]
 
* [[Quiver representations]]
 
+
* [[Coxeter functor and transformation]]
  
 
==expositions==
 
==expositions==
34번째 줄: 34번째 줄:
 
[[분류:math and physics]]
 
[[분류:math and physics]]
 
[[분류:math]]
 
[[분류:math]]
 +
[[분류:migrate]]
 +
 +
==메타데이터==
 +
===위키데이터===
 +
* ID :  [https://www.wikidata.org/wiki/Q5515505 Q5515505]
 +
===Spacy 패턴 목록===
 +
* [{'LOWER': 'gabriel'}, {'LOWER': "'s"}, {'LEMMA': 'theorem'}]

2021년 2월 17일 (수) 01:06 기준 최신판

statement

thm (Gabriel)

A connected quiver Q has finite type iff the underlying graph is a Dynkin diagram of (A,D,E) type. Moreoever there is a bijection between {indecomposable kQ-modules} and {positive roots} \[M \to \dim M\] where \(\dim\) is dimension vector



idea of proof

  • define tilting functor
  • get Coxeter element



Kac theorem

related items

expositions

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LOWER': 'gabriel'}, {'LOWER': "'s"}, {'LEMMA': 'theorem'}]