"Rank of partition and mock theta conjecture"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
(피타고라스님이 이 페이지의 이름을 Andews and Dragonetts로 바꾸었습니다.)
 
(사용자 3명의 중간 판 39개는 보이지 않습니다)
1번째 줄: 1번째 줄:
 +
==order 3 Ramanujan mock theta function==
  
 +
* [[3rd order mock theta functions]] :<math>f(q) = \sum_{n\ge 0} {q^{n^2}\over (-q;q)_n^2} =1+\sum_{n\ge 1} \frac{q^{n^2}}{(1+q)^2(1+q^2)^2\cdots{(1+q^{n})^2}}={2\over \prod_{n>0}(1-q^n)}\sum_{n\in Z}{(-1)^nq^{3n^2/2+n/2}\over 1+q^n}</math>
 +
*  coefficients 1, 1, -2, 3, -3, 3, -5, 7, -6, 6, -10, 12, -11, 13, -17, 20, -21, 21, -27, 34, -33, 36, -46, 51, -53, 58, -68, 78, -82, 89, -104, 118, -123, 131, -154, 171, -179, 197, -221, 245, -262, 279, -314, 349, -369, 398, -446, 486, -515, 557, -614, 671, -715, 767, -845, 920, -977, 1046, -1148, 1244
 +
 +
 +
 +
==Andrews-Dragonette==
 +
 +
* '''[Dragonette1952]''' and '''[Andrews1966]'''
 +
* concerns the question of partitions with even rank and odd rank
 +
*  rank of partition =  largest part - number of parts 9의 분할인 {7,1,1}의 경우, rank=7-3=4 9의 분할인 {4,3,1,1}의 경우, rank=4-4=0
 +
* <math>N_e(n), N_o(n)</math> number of partition with even rank and odd rank
 +
* <math>p(n)=N_e(n)+N_o(n)</math>
 +
* <math>\alpha(n)=N_e(n)-N_o(n)</math>
 +
*  this is in fact the coefficient of the [[3rd order mock theta functions]]
 +
:<math>f(q) = \sum_{n\ge 0} \alpha(n)q^n</math>
 +
* thus we need modularity of f(q) to get exact formula for <math>\alpha(n)</math> as <math>p(n)</math> was obtained by the circle method
 +
 +
 +
 +
 +
 +
==harmonic Maass form of weight 1/2==
 +
 +
* Zweger's completion
 +
 +
 +
 +
 +
 +
==construction of the Maass-Poincare series==
 +
 +
 +
 +
 +
 +
==generalization==
 +
 +
* crank
 +
 +
 +
 +
 +
 +
==history==
 +
 +
* http://www.google.com/search?hl=en&tbs=tl:1&q=
 +
 +
 +
 +
 +
==related items==
 +
* [[3rd order mock theta functions]]
 +
* [[Dyson rank generating function]]
 +
 +
 +
==computational resource==
 +
* https://docs.google.com/file/d/0B8XXo8Tve1cxSzZNSVVMNFZIUzg/edit
 +
* http://oeis.org/A000025
 +
 +
 +
 +
==expositions==
 +
* [http://www.maa.org/news/030807puzzlesolved.html Puzzle Solved: Ramanujan's Mock Theta Conjectures]
 +
*  [http://link.springer.com/article/10.1023%2FA%3A1026224002193?LI=true Partitions : at the interface of q-series and modular forms] Andrews, George E., 2003
 +
 +
 +
 +
==articles==
 +
 +
* [http://dx.doi.org/10.1007/s00222-005-0493-5 The f(q) mock theta function conjecture and partition ranks] Kathrin Bringmann and Ken Ono, Inventiones Mathematicae Volume 165, Number 2, 2006
 +
*  George E. Andrews and F. G. Garvan, [http://dx.doi.org/10.1016/0001-8708%2889%2990070-4 Ramanujan's “Lost” Notebook VI: The mock theta conjectures] 1989
 +
* Hickerson, Dean, <cite class="" id="CITEREFHickerson1988" style="line-height: 2em; font-style: normal;">A proof of the mock theta conjectures</cite> (1988), <cite style="line-height: 2em; font-style: normal;"><em style="line-height: 2em;">[http://en.wikipedia.org/wiki/Inventiones_Mathematicae Inventiones Mathematicae]</em> '''94''' (3): 639–660, [http://en.wikipedia.org/wiki/Digital_object_identifier doi]:[http://dx.doi.org/10.1007%2FBF01394279 10.1007/BF01394279], [http://en.wikipedia.org/wiki/Mathematical_Reviews MR][http://www.ams.org/mathscinet-getitem?mr=969247 969247], [http://en.wikipedia.org/wiki/International_Standard_Serial_Number ISSN] [http://worldcat.org/issn/0020-9910 0020-9910]</cite>
 +
* '''[Andrews1966]'''[http://dx.doi.org/10.2307%2F2373202 On the theorems of Watson and Dragonette for Ramanujan's mock theta functions]
 +
** Andrews, George E. (1966), American Journal of Mathematics 88: 454–490
 +
* '''[Dragonette1952]'''[http://dx.doi.org/10.2307%2F1990714 Some asymptotic formulae for the mock theta series of Ramanujan]
 +
** Dragonette, Leila A. (1952), Transactions of the American Mathematical Society 72: 474–500
 +
* <cite class="" id="CITEREFWatson1937" style="line-height: 2em; font-style: normal;">Watson, G. N. (1937), "The Mock Theta Functions (2)", <em style="line-height: 2em;">Proc. London Math. Soc.</em> '''s2-42''': 274–304, [http://en.wikipedia.org/wiki/Digital_object_identifier doi]:[http://dx.doi.org/10.1112%2Fplms%2Fs2-42.1.274 10.1112/plms/s2-42.1.274]</cite>
 +
* <cite class="" id="CITEREFWatson1936" style="line-height: 2em; font-style: normal;">Watson, G. N. (1936), "The Final Problem : An Account of the Mock Theta Functions", <em style="line-height: 2em;">J. London Math. Soc.</em> '''11''': 55–80, [http://en.wikipedia.org/wiki/Digital_object_identifier doi]:[http://dx.doi.org/10.1112%2Fjlms%2Fs1-11.1.55 10.1112/jlms/s1-11.1.55]</cite>
 +
 +
[[분류:math and physics]]
 +
[[분류:mock modular forms]]
 +
[[분류:math]]
 +
[[분류:migrate]]
 +
 +
==메타데이터==
 +
===위키데이터===
 +
* ID :  [https://www.wikidata.org/wiki/Q7293214 Q7293214]
 +
===Spacy 패턴 목록===
 +
* [{'LOWER': 'rank'}, {'LOWER': 'of'}, {'LOWER': 'a'}, {'LEMMA': 'partition'}]

2021년 2월 17일 (수) 02:26 기준 최신판

order 3 Ramanujan mock theta function

  • 3rd order mock theta functions \[f(q) = \sum_{n\ge 0} {q^{n^2}\over (-q;q)_n^2} =1+\sum_{n\ge 1} \frac{q^{n^2}}{(1+q)^2(1+q^2)^2\cdots{(1+q^{n})^2}}={2\over \prod_{n>0}(1-q^n)}\sum_{n\in Z}{(-1)^nq^{3n^2/2+n/2}\over 1+q^n}\]
  • coefficients 1, 1, -2, 3, -3, 3, -5, 7, -6, 6, -10, 12, -11, 13, -17, 20, -21, 21, -27, 34, -33, 36, -46, 51, -53, 58, -68, 78, -82, 89, -104, 118, -123, 131, -154, 171, -179, 197, -221, 245, -262, 279, -314, 349, -369, 398, -446, 486, -515, 557, -614, 671, -715, 767, -845, 920, -977, 1046, -1148, 1244


Andrews-Dragonette

  • [Dragonette1952] and [Andrews1966]
  • concerns the question of partitions with even rank and odd rank
  • rank of partition = largest part - number of parts 9의 분할인 {7,1,1}의 경우, rank=7-3=4 9의 분할인 {4,3,1,1}의 경우, rank=4-4=0
  • \(N_e(n), N_o(n)\) number of partition with even rank and odd rank
  • \(p(n)=N_e(n)+N_o(n)\)
  • \(\alpha(n)=N_e(n)-N_o(n)\)
  • this is in fact the coefficient of the 3rd order mock theta functions

\[f(q) = \sum_{n\ge 0} \alpha(n)q^n\]

  • thus we need modularity of f(q) to get exact formula for \(\alpha(n)\) as \(p(n)\) was obtained by the circle method



harmonic Maass form of weight 1/2

  • Zweger's completion



construction of the Maass-Poincare series

generalization

  • crank



history



related items


computational resource


expositions


articles

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LOWER': 'rank'}, {'LOWER': 'of'}, {'LOWER': 'a'}, {'LEMMA': 'partition'}]