"Basic hypergeometric series"의 두 판 사이의 차이
		
		
		
		
		
		둘러보기로 가기
		검색하러 가기
		
				
		
		
	
Pythagoras0 (토론 | 기여)   | 
				|||
| (사용자 3명의 중간 판 21개는 보이지 않습니다) | |||
| 1번째 줄: | 1번째 줄: | ||
| − | + | ==theory==  | |
| − | * [http://pythagoras0.springnote.com/pages/4145675 오일러의 오각수정리(pentagonal number theorem)]  | + | * [http://pythagoras0.springnote.com/pages/4145675 오일러의 오각수정리(pentagonal number theorem)]<math>(1-x)(1-x^2)(1-x^3) \cdots = 1 - x - x^2 + x^5 + x^7 - x^{12} - x^{15} + x^{22} + x^{26} + \cdots</math>  | 
| − | *  오일러공식  | + | *  오일러공식<math>\prod_{n=0}^{\infty}(1+zq^n)=\sum_{n\geq 0}\frac{q^{n(n-1)/2}}{(1-q)(1-q^2)\cdots(1-q^n)} z^n</math>  | 
| − | + | ||
| − | + | ||
| + | |||
| + | ==q-Pochhammer==  | ||
* partition generating function  | * partition generating function  | ||
| 16번째 줄: | 18번째 줄: | ||
# Series[QPochhammer[q, q], {q, 0, 100}]  | # Series[QPochhammer[q, q], {q, 0, 100}]  | ||
| − | + | ||
| − | + | ||
| − | + | ==q-hypergeometric series==  | |
<math>\sum_{n\geq 0}^{\infty}\frac{q^{n^2/2}}{(q)_n}\sim \exp(\frac{\pi^2}{12t}-\frac{t}{48})</math>  | <math>\sum_{n\geq 0}^{\infty}\frac{q^{n^2/2}}{(q)_n}\sim \exp(\frac{\pi^2}{12t}-\frac{t}{48})</math>  | ||
| − | + | ||
| + | |||
| + | # f[q_] := QHypergeometricPFQ[{}, {}, q, -q^(1/2)] g[q_] := Exp[-(Pi^2/(12 Log[q])) + Log[q]/48] Table[N[f[1 - 1/10^(i)]/g[1 - 1/10^(i)], 50], {i, 1, 5}] // TableForm  | ||
| + | |||
| + | |||
| + | |||
| + | |||
| − | + | ==KdV Hirota polynomials==  | |
| − | + | * Series[1/QPochhammer[q, q^2] - 1/QPochhammer[q^2, q^4], {q, 0, 100}]  | |
| + | * [[KdV equation]]  | ||
| − | + | ||
| + | |||
| + | |||
| + | ==related items==  | ||
* [[asymptotic analysis of basic hypergeometric series]]  | * [[asymptotic analysis of basic hypergeometric series]]  | ||
* [[representation theory and hypergeometric functions|hypergeometric functions and representation theory]]  | * [[representation theory and hypergeometric functions|hypergeometric functions and representation theory]]  | ||
| + | * [[Bailey pair and lemma]]  | ||
| + | * [[Bailey lattice]]  | ||
| + | * [[sources of Bailey pairs]]  | ||
| + | * [[determinantal identities and Airy kernel]]  | ||
| + | * [[elliptic hypergeometric series]]  | ||
| + | * [[finitized q-series identity]]  | ||
| + | * [[integer partitions]]  | ||
| + | * [[q-analogue of summation formulas]]  | ||
| + | * [[Slater list]]  | ||
| + | * [[Slater 31]]  | ||
| + | * [[Slater 32]]  | ||
| + | * [[Slater 34]]  | ||
| + | * [[Slater 36]]  | ||
| + | * [[Slater 37]]  | ||
| + | * [[Slater 47]]  | ||
| + | * [[Slater 83]]  | ||
| + | * [[Slater 86]]  | ||
| + | * [[Slater 92]]  | ||
| + | * [[Slater 98]]  | ||
| + | * [[useful techniques in q-series]]  | ||
| + | |||
| + | |||
| + | ==memo==  | ||
| + | * [http://www.springerlink.com/content/j22163577187156l/ Common extension of bilateral series for Andrews’ q-Bailey and q-Gauss sums Wenchang Chu and Chenying Wang]  | ||
| − | + | ||
| + | ==computational resource==  | ||
| + | * https://drive.google.com/file/d/1ko4taip_awmsywmG0oV3zbW7TnRtKyhb/view  | ||
| − | + | ||
| − | |||
| − | + | [[분류:math and physics]]  | |
| + | [[분류:migrate]]  | ||
| − | + | ==메타데이터==  | |
| − | + | ===위키데이터===  | |
| − | *  | + | * ID :  [https://www.wikidata.org/wiki/Q1062958 Q1062958]  | 
| − | + | ===Spacy 패턴 목록===  | |
| − | + | * [{'LOWER': 'basic'}, {'LOWER': 'hypergeometric'}, {'LEMMA': 'series'}]  | |
| − | + | * [{'LOWER': 'q'}, {'OP': '*'}, {'LOWER': 'hypergeometric'}, {'LEMMA': 'series'}]  | |
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
2021년 2월 17일 (수) 01:28 기준 최신판
theory
- 오일러의 오각수정리(pentagonal number theorem)\((1-x)(1-x^2)(1-x^3) \cdots = 1 - x - x^2 + x^5 + x^7 - x^{12} - x^{15} + x^{22} + x^{26} + \cdots\)
 - 오일러공식\(\prod_{n=0}^{\infty}(1+zq^n)=\sum_{n\geq 0}\frac{q^{n(n-1)/2}}{(1-q)(1-q^2)\cdots(1-q^n)} z^n\)
 
 
 
q-Pochhammer
- partition generating function
 
- Series[1/QPochhammer[q, q], {q, 0, 100}]
 
- Dedekind eta
 
- Series[QPochhammer[q, q], {q, 0, 100}]
 
 
 
q-hypergeometric series
\(\sum_{n\geq 0}^{\infty}\frac{q^{n^2/2}}{(q)_n}\sim \exp(\frac{\pi^2}{12t}-\frac{t}{48})\)
 
- f[q_] := QHypergeometricPFQ[{}, {}, q, -q^(1/2)] g[q_] := Exp[-(Pi^2/(12 Log[q])) + Log[q]/48] Table[N[f[1 - 1/10^(i)]/g[1 - 1/10^(i)], 50], {i, 1, 5}] // TableForm
 
 
 
KdV Hirota polynomials
- Series[1/QPochhammer[q, q^2] - 1/QPochhammer[q^2, q^4], {q, 0, 100}]
 - KdV equation
 
 
 
- asymptotic analysis of basic hypergeometric series
 - hypergeometric functions and representation theory
 - Bailey pair and lemma
 - Bailey lattice
 - sources of Bailey pairs
 - determinantal identities and Airy kernel
 - elliptic hypergeometric series
 - finitized q-series identity
 - integer partitions
 - q-analogue of summation formulas
 - Slater list
 - Slater 31
 - Slater 32
 - Slater 34
 - Slater 36
 - Slater 37
 - Slater 47
 - Slater 83
 - Slater 86
 - Slater 92
 - Slater 98
 - useful techniques in q-series
 
memo
 
computational resource
메타데이터
위키데이터
- ID : Q1062958
 
Spacy 패턴 목록
- [{'LOWER': 'basic'}, {'LOWER': 'hypergeometric'}, {'LEMMA': 'series'}]
 - [{'LOWER': 'q'}, {'OP': '*'}, {'LOWER': 'hypergeometric'}, {'LEMMA': 'series'}]