"Quaternion algebras and quadratic forms"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
잔글 (찾아 바꾸기 – “<h5>” 문자열을 “==” 문자열로)
 
(사용자 2명의 중간 판 12개는 보이지 않습니다)
1번째 줄: 1번째 줄:
==introduction</h5>
+
==introduction==
 +
* let <math>F</math> be a field
 +
* consider a quaternion algebra defined by <math>F[i,j]/(i^2=a,j^2=b,ij=-ji)</math>
 +
* we denote it as
 +
:<math>\left(\frac{a,b}{F}\right)</math>
 +
* 4 dimensional algebra over <math>F</math> with basis <math>1,i,j,k</math> and multiplication rules <math>i^2=a</math>, <math>j^2=b</math>, <math>ij=-ji=k</math>.
 +
* it is an example of a central simple algebra (see [[Brauer group]])
 +
* it is either a division algebra or isomorphic to the matrix algebra of <math>2\times 2</math> matrices over <math>F</math>: the latter case is termed split
  
* an example of a central simple algebra (see [[Brauer group]])<br>
+
 
*  classification of quaternion algebras over fields<br>
+
==quaternion algebra as a quadratic space==
* division algebra
+
* let us consider the algebra <math>A=\left(\frac{a,b}{F}\right)</math>
* matrix algebra
+
* we regard it as a quadratic space associated with the quadratic form <math>(1,-a,-b,ab)</math>
* http://www.maths.tcd.ie/pub/ims/bull57/S5701.pdf
+
 
 +
 
 +
==Hilbert symbol==
 +
* In this case the algebra represents an element of order 2 in the [[Brauer group]] of <math>F</math>, which is identified with -1 if it is a division algebra and +1 if it is isomorphic to the algebra of 2 by 2 matrices.
 +
 
 +
 
 +
==related items==
 +
* [[Steinberg symbol]]
 +
* [[Quadratic forms over p-adic integer rings]]
 +
 
 +
==expositions==
 +
* Lewis, David W. 2006. “Quaternion Algebras and the Algebraic Legacy of Hamilton’s Quaternions.” Irish Mathematical Society Bulletin (57): 41–64. http://www.maths.tcd.ie/pub/ims/bull57/S5701.pdf
 
* [http://uwspace.uwaterloo.ca/bitstream/10012/3656/1/second2.pdf Quaternion algebras and quadratic forms], Master's thesis, Zi Yang Sham, University of Waterloo
 
* [http://uwspace.uwaterloo.ca/bitstream/10012/3656/1/second2.pdf Quaternion algebras and quadratic forms], Master's thesis, Zi Yang Sham, University of Waterloo
* www.math.virginia.edu/~ww9c/kranec.pdf
+
* http://www.math.virginia.edu/~ww9c/kranec.pdf
 +
 
 +
[[분류:개인노트]]
 +
[[분류:math and physics]]
 +
[[분류:math]]
 +
[[분류:migrate]]
 +
 
 +
==메타데이터==
 +
===위키데이터===
 +
* ID :  [https://www.wikidata.org/wiki/Q2835967 Q2835967]
 +
===Spacy 패턴 목록===
 +
* [{'LOWER': 'quaternion'}, {'LEMMA': 'algebra'}]

2021년 2월 17일 (수) 01:35 기준 최신판

introduction

  • let \(F\) be a field
  • consider a quaternion algebra defined by \(F[i,j]/(i^2=a,j^2=b,ij=-ji)\)
  • we denote it as

\[\left(\frac{a,b}{F}\right)\]

  • 4 dimensional algebra over \(F\) with basis \(1,i,j,k\) and multiplication rules \(i^2=a\), \(j^2=b\), \(ij=-ji=k\).
  • it is an example of a central simple algebra (see Brauer group)
  • it is either a division algebra or isomorphic to the matrix algebra of \(2\times 2\) matrices over \(F\): the latter case is termed split


quaternion algebra as a quadratic space

  • let us consider the algebra \(A=\left(\frac{a,b}{F}\right)\)
  • we regard it as a quadratic space associated with the quadratic form \((1,-a,-b,ab)\)


Hilbert symbol

  • In this case the algebra represents an element of order 2 in the Brauer group of \(F\), which is identified with -1 if it is a division algebra and +1 if it is isomorphic to the algebra of 2 by 2 matrices.


related items

expositions

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LOWER': 'quaternion'}, {'LEMMA': 'algebra'}]